Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Row and column spaces
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Overview== Let {{mvar|A}} be an {{mvar|m}}-by-{{mvar|n}} matrix. Then * {{math|1=rank(''A'') = dim(rowsp(''A'')) = dim(colsp(''A''))}},<ref>{{harvtxt|Anton|1987|p=183}}</ref> * {{math|rank(''A'')}} = number of [[Pivot element|pivots]] in any echelon form of {{mvar|A}}, * {{math|rank(''A'')}} = the maximum number of linearly independent rows or columns of {{mvar|A}}.<ref>{{harvtxt|Beauregard|Fraleigh|1973|p=254}}</ref> If the matrix represents a [[linear transformation]], the column space of the matrix equals the [[image (mathematics)|image]] of this linear transformation. The column space of a matrix {{mvar|A}} is the set of all linear combinations of the columns in {{mvar|A}}. If {{math|1=''A'' = ['''a'''<sub>1</sub> β― '''a'''<sub>''n''</sub>]}}, then {{math|1=colsp(''A'') = span({{mset|'''a'''<sub>1</sub>, ..., '''a'''<sub>''n''</sub>}})}}. Given a matrix {{mvar|A}}, the action of the matrix {{mvar|A}} on a vector {{math|'''x'''}} returns a linear combination of the columns of {{mvar|A}} with the coordinates of {{math|'''x'''}} as coefficients; that is, the columns of the matrix generate the column space. ===Example=== Given a matrix {{mvar|J}}: :<math> J = \begin{bmatrix} 2 & 4 & 1 & 3 & 2\\ -1 & -2 & 1 & 0 & 5\\ 1 & 6 & 2 & 2 & 2\\ 3 & 6 & 2 & 5 & 1 \end{bmatrix} </math> the rows are <math>\mathbf{r}_1 = \begin{bmatrix} 2 & 4 & 1 & 3 & 2 \end{bmatrix}</math>, <math>\mathbf{r}_2 = \begin{bmatrix} -1 & -2 & 1 & 0 & 5 \end{bmatrix}</math>, <math>\mathbf{r}_3 = \begin{bmatrix} 1 & 6 & 2 & 2 & 2 \end{bmatrix}</math>, <math>\mathbf{r}_4 = \begin{bmatrix} 3 & 6 & 2 & 5 & 1 \end{bmatrix}</math>. Consequently, the row space of {{mvar|J}} is the subspace of <math>\R^5</math> [[linear span|spanned]] by {{math|{{mset| '''r'''<sub>1</sub>, '''r'''<sub>2</sub>, '''r'''<sub>3</sub>, '''r'''<sub>4</sub> }}}}. Since these four row vectors are [[Linear independence|linearly independent]], the row space is 4-dimensional. Moreover, in this case it can be seen that they are all [[orthogonality|orthogonal]] to the vector {{math|1='''n''' = [6, β1, 4, β4, 0]}} ({{math|1='''n'''}} is an element of the [[Kernel (linear algebra)|kernel]] of {{mvar|J}} ), so it can be deduced that the row space consists of all vectors in <math>\R^5</math> that are orthogonal to {{math|'''n'''}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)