Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ruffini's rule
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Algorithm== The rule establishes a method for dividing the polynomial: :<math>P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0</math> by the binomial: :<math>Q(x)=x-r</math> to obtain the quotient polynomial: :<math>R(x)=b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+\cdots+b_1x+b_0.</math> The algorithm is in fact the [[polynomial long division|long division]] of ''P''(''x'') by ''Q''(''x''). To divide ''P''(''x'') by ''Q''(''x''): # Take the coefficients of ''P''(''x'') and write them down in order. Then, write ''r'' at the bottom-left edge just over the line: #:<math> \begin{array}{c|c c c c|c} & a_n & a_{n-1} & \dots & a_1 & a_0\\ r & & & & & \\ \hline & & & & & \\ \end{array} </math> # Pass the leftmost coefficient (''a''<sub>''n''</sub>) to the bottom just under the line. #:<math> \begin{array}{c|c c c c|c} & a_n & a_{n-1} & \dots & a_1 & a_0\\ r & & & & & \\ \hline & a_n & & & & \\ & =b_{n-1} & & & & \end{array} </math> # Multiply the rightmost number under the line by ''r'', and write it over the line and one position to the right. #:<math> \begin{array}{c|c c c c|c} & a_n & a_{n-1} & \dots & a_1 & a_0\\ r & & b_{n-1} \cdot r & & & \\ \hline & a_n & & & & \\ & =b_{n-1} & & & & \end{array} </math> # Add the two values just placed in the same column. #:<math> \begin{array}{c|c c c c|c} & a_n & a_{n-1} & \dots & a_1 & a_0\\ r & & b_{n-1}\cdot r & & & \\ \hline & a_n & b_{n-1}\cdot r+a_{n-1} & & & \\ & =b_{n-1} & =b_{n-2} & & & \end{array} </math> # Repeat steps 3 and 4 until no numbers remain. #:<math> \begin{array}{c|c c c c|c} & a_n & a_{n-1} & \dots & a_1 & a_0 \\ r & & b_{n-1}\cdot r & \dots & b_1\cdot r & b_0 \cdot r \\ \hline & a_n & b_{n-1} \cdot r+a_{n-1} & \dots & b_1 \cdot r+a_1 & a_0+b_0 \cdot r \\ & =b_{n-1} & =b_{n-2} & \dots & =b_0 & =s \\ \end{array} </math> The ''b'' values are the coefficients of the result (''R''(''x'')) polynomial, the degree of which is one less than that of ''P''(''x''). The final value obtained, ''s'', is the remainder. The [[polynomial remainder theorem]] asserts that the remainder is equal to ''P''(''r''), the value of the polynomial at ''r''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)