Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Scale parameter
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== If a family of [[probability distribution]]s is such that there is a parameter ''s'' (and other parameters ''ΞΈ'') for which the [[cumulative distribution function]] satisfies :<math>F(x;s,\theta) = F(x/s;1,\theta), \!</math> then ''s'' is called a '''scale parameter''', since its value determines the "[[scale (ratio)|scale]]" or [[statistical dispersion]] of the probability distribution. If ''s'' is large, then the distribution will be more spread out; if ''s'' is small then it will be more concentrated. [[File:Effects of a scale parameter on a positive-support probability distribution.gif|thumb|300px|Animation showing the effects of a scale parameter on a probability distribution supported on the positive real line.]] [[File:Effect of a scale parameter over a mixture of two normal probability distributions.gif|thumb|300px|Effect of a scale parameter over a mixture of two normal probability distributions]] If the [[probability density function|probability density]] exists for all values of the complete parameter set, then the density (as a function of the scale parameter only) satisfies :<math>f_s(x) = f(x/s)/s, \!</math> where ''f'' is the density of a standardized version of the density, i.e. <math>f(x) \equiv f_{s=1}(x)</math>. An [[estimator]] of a scale parameter is called an '''estimator of scale.''' ===Families with Location Parameters=== In the case where a parametrized family has a [[location parameter]], a slightly different definition is often used as follows. If we denote the location parameter by <math>m</math>, and the scale parameter by <math>s</math>, then we require that <math>F(x;s,m,\theta)=F((x-m)/s;1,0,\theta)</math> where <math>F(x,s,m,\theta)</math> is the CDF for the parametrized family.<ref>{{cite web |url= http://www.encyclopediaofmath.org/index.php?title=Scale_parameter&oldid=13206 |title= Scale parameter |last=Prokhorov |first=A.V. |date= 7 February 2011 |website=Encyclopedia of Mathematics |publisher= Springer |access-date=7 February 2019}}</ref> This modification is necessary in order for the standard deviation of a non-central Gaussian to be a scale parameter, since otherwise the mean would change when we rescale <math>x</math>. However, this alternative definition is not consistently used.<ref>{{cite web |url=https://www.math.kth.se/matstat/gru/sf2955/scaleparameter |title= Scale parameter |last=Koski |first=Timo |website=KTH Royal Institute of Technology|access-date=7 February 2019}}</ref> ===Simple manipulations=== We can write <math>f_s</math> in terms of <math>g(x) = x/s</math>, as follows: :<math>f_s(x) = f\left(\frac{x}{s}\right) \cdot \frac{1}{s} = f(g(x))g'(x).</math> Because ''f'' is a probability density function, it integrates to unity: :<math> 1 = \int_{-\infty}^{\infty} f(x)\,dx = \int_{g(-\infty)}^{g(\infty)} f(x)\,dx. </math> By the [[substitution rule]] of integral calculus, we then have :<math> 1 = \int_{-\infty}^{\infty} f(g(x)) g'(x)\,dx = \int_{-\infty}^{\infty} f_s(x)\,dx. </math> So <math>f_s</math> is also properly normalized.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)