Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Schur complement
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Background== The Schur complement arises when performing a block [[Gaussian elimination]] on the matrix ''M''. In order to eliminate the elements below the block diagonal, one multiplies the matrix ''M'' by a ''block lower triangular'' matrix on the right as follows: <math display="block">\begin{align} &M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad \to \quad \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} I_p & 0 \\ -D^{-1}C & I_q \end{bmatrix} = \begin{bmatrix} A - BD^{-1}C & B \\ 0 & D \end{bmatrix}, \end{align}</math> where ''I<sub>p</sub>'' denotes a ''p''×''p'' [[identity matrix]]. As a result, the Schur complement <math>M/D = A - BD^{-1}C</math> appears in the upper-left ''p''×''p'' block. Continuing the elimination process beyond this point (i.e., performing a block [[Gauss–Jordan elimination]]), <math display="block">\begin{align} &\begin{bmatrix} A - BD^{-1}C & B \\ 0 & D \end{bmatrix} \quad \to \quad \begin{bmatrix} I_p & -BD^{-1} \\ 0 & I_q \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & B \\ 0 & D \end{bmatrix} = \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix}, \end{align}</math> leads to an [[LDU decomposition]] of ''M'', which reads <math display="block">\begin{align} M &= \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I_p & BD^{-1} \\ 0 & I_q \end{bmatrix}\begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix}\begin{bmatrix} I_p & 0 \\ D^{-1}C & I_q \end{bmatrix}. \end{align}</math> Thus, the inverse of ''M'' may be expressed involving ''D''<sup>−1</sup> and the inverse of Schur's complement, assuming it exists, as <math display="block">\begin{align} M^{-1} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} ={} &\left(\begin{bmatrix} I_p & BD^{-1} \\ 0 & I_q \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I_p & 0 \\ D^{-1}C & I_q \end{bmatrix} \right)^{-1} \\ ={} &\begin{bmatrix} I_p & 0 \\ -D^{-1}C & I_q \end{bmatrix} \begin{bmatrix} \left(A - BD^{-1}C\right)^{-1} & 0 \\ 0 & D^{-1} \end{bmatrix} \begin{bmatrix} I_p & -BD^{-1} \\ 0 & I_q \end{bmatrix} \\[4pt] ={} &\begin{bmatrix} \left(A - BD^{-1}C\right)^{-1} & -\left(A - BD^{-1}C\right)^{-1} BD^{-1} \\ -D^{-1}C\left(A - BD^{-1}C\right)^{-1} & D^{-1} + D^{-1}C\left(A - BD^{-1}C\right)^{-1}BD^{-1} \end{bmatrix} \\[4pt] ={} &\begin{bmatrix} \left(M/D\right)^{-1} & -\left(M/D\right)^{-1} B D^{-1} \\ -D^{-1}C\left(M/D\right)^{-1} & D^{-1} + D^{-1}C\left(M/D\right)^{-1} B D^{-1} \end{bmatrix}. \end{align}</math> The above relationship comes from the elimination operations that involve ''D''<sup>−1</sup> and ''M/D''. An equivalent derivation can be done with the roles of ''A'' and ''D'' interchanged. By equating the expressions for ''M''<sup>−1</sup> obtained in these two different ways, one can establish the [[matrix inversion lemma]], which relates the two Schur complements of ''M'': ''M/D'' and ''M/A'' (see ''"Derivation from LDU decomposition"'' in {{slink|Woodbury_matrix_identity#Alternative_proofs}}).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)