Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sieve theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Basic sieve theory == For information on notation see at the end. We follow the [[Ansatz]] from ''Opera de Cribro'' by [[John Friedlander]] and [[Henryk Iwaniec]].<ref>{{cite book |title=Opera de Cribro |first1=John |last1=Friedlander |first2=Henryk |last2=Iwaniec |publisher = American Mathematical Society |date=2010 |isbn=978-0-8218-4970-5 |series=American Mathematical Society Colloquium Publications | volume=57}}</ref> We start with some [[countable]] sequence of non-negative numbers <math>\mathcal{A}=(a_n)</math>. In the most basic case this sequence is just the [[indicator function]] <math>a_n=1_{A}(n)</math> of some set <math>A=\{s:s\leq x\}</math> we want to sieve. However this abstraction allows for more general situations. Next we introduce a general set of prime numbers called the ''sifting range'' <math>\mathcal{P}\subseteq \mathbb{P}</math> and their product up to <math>z</math> as a function <math>P(z)=\prod\limits_{p\in\mathcal{P}, p<z}p</math>. The goal of sieve theory is to estimate the ''sifting function'' :<math>S(\mathcal{A},\mathcal{P},z)=\sum\limits_{n\leq x, \text{gcd}(n,P(z))=1}a_n.</math> In the case of <math>a_n=1_{A}(n)</math> this just counts the [[cardinality]] of a subset <math>A_{\operatorname{sift}}\subseteq A</math> of numbers, that are [[coprime]] to the [[prime factor]]s of <math>P(z)</math>. === The inclusion–exclusion principle === For <math>\mathcal{P}</math> define :<math>A_{\operatorname{sift}}:=\{a\in A|(a,p_1\cdots p_k)=1\}, \quad p_1,\dots,p_k\in\mathcal{P}</math> and for each prime <math>p\in \mathcal{P}</math> denote the subset <math>E_p\subseteq A</math> of multiples <math>E_p:=\{pn:n\in\mathbb{N}\}</math> and let <math>|E_p|</math> be the cardinality. We now introduce a way to calculate the cardinality of <math>A_{\operatorname{sift}}</math>. For this the sifting range <math>\mathcal{P}</math> will be a concrete example of primes of the form <math>\mathcal{P}:=\{2,3,5,7,11,13\dots\}</math>. If one wants to calculate the cardinality of <math>A_{\operatorname{sift}}</math>, one can apply the [[inclusion–exclusion principle]]. This algorithm works like this: first one removes from the cardinality of <math>|A|</math> the cardinality <math>|E_2|</math> and <math>|E_3|</math>. Now since one has removed the numbers that are divisible by <math>2</math> and <math>3</math> twice, one has to add the cardinality <math>|E_6|</math>. In the next step one removes <math>|E_5|</math> and adds <math>|E_{10}|</math> and <math>|E_{15}|</math> again. Additionally one has now to remove <math>|E_{30}|</math>, i.e. the cardinality of all numbers divisible by <math>2,3</math> and <math>5</math>. This leads to the inclusion–exclusion principle :<math>|A_{\operatorname{sift}}|=|A|-|E_2|-|E_3|+|E_6|-|E_5|+|E_{10}|+|E_{15}|-|E_{30}|+\cdots</math> Notice that one can write this as :<math>|A_{\operatorname{sift}}|=\sum\limits_{d|P} \mu(d)| E_d|</math> where <math>\mu</math> is the [[Möbius function]] and <math>P:=\prod\limits_{p\in\mathcal{P}} p</math> the product of all primes in <math>\mathcal{P}</math> and <math>E_1:=A</math>. === Legendre's identity === We can rewrite the sifting function with ''Legendre's identity'' :<math>S(\mathcal{A},\mathcal{P},z)=\sum\limits_{d\mid P(z)}\mu(d)A_d(x)</math> by using the [[Möbius function]] and some functions <math>A_d(x)</math> induced by the elements of <math>\mathcal{P}</math> :<math>A_d(x)=\sum\limits_{n\leq x, n\equiv 0\pmod{d}}a_n.</math> ==== Example ==== Let <math>z=7</math> and <math>\mathcal{P}=\mathbb{P}</math>. The Möbius function is negative for every prime, so we get :<math>\begin{align} S(\mathcal{A},\mathbb{P},7)&=A_1(x)-A_2(x)-A_3(x)-A_5(x)+A_6(x)+A_{10}(x)+A_{15}(x)-A_{30}(x). \end{align}</math> === Approximation of the congruence sum === One assumes then that <math>A_d(x)</math> can be written as :<math>A_d(x)=g(d)X+r_d(x)</math> where <math>g(d)</math> is a ''density'', meaning a [[multiplicative function]] such that :<math>g(1)=1,\qquad 0\leq g(p)<1 \qquad p\in \mathbb{P}</math> and <math>X</math> is an approximation of <math>A_1(x)</math> and <math>r_d(x)</math> is some remainder term. The sifting function becomes :<math>S(\mathcal{A},\mathcal{P},z)=X\sum\limits_{d\mid P(z)}\mu(d)g(d)+\sum\limits_{d\mid P(z)}\mu(d)r_d(x)</math> or in short :<math>S(\mathcal{A},\mathcal{P},z)=XG(x,z)+R(x,z).</math> One tries then to estimate the sifting function by finding upper and lower [[Upper and lower bounds|bounds]] for <math>S</math> respectively <math>G</math> and <math>R</math>. The partial sum of the sifting function alternately over- and undercounts, so the remainder term will be huge. [[Viggo Brun|Brun]]'s idea to improve this was to replace <math>\mu(d)</math> in the sifting function with a weight sequence <math>(\lambda_d)</math> consisting of restricted Möbius functions. Choosing two appropriate sequences <math>(\lambda_d^{-})</math> and <math>(\lambda_d^{+})</math> and denoting the sifting functions with <math>S^{-}</math> and <math>S^{+}</math>, one can get lower and upper bounds for the original sifting functions :<math>S^{-}\leq S\leq S^{+}.</math><ref>{{cite book |title=Opera de Cribro |first1=John |last1=Friedlander |first2=Henryk |last2=Iwaniec |publisher = American Mathematical Society |date=2010 |isbn=978-0-8218-4970-5 |series=American Mathematical Society Colloquium Publications | volume=57}}</ref> Since <math>g</math> is multiplicative, one can also work with the identity :<math>\sum\limits_{d\mid n}\mu(d)g(d)=\prod\limits_{\begin{array}{c} p|n ;\; p\in\mathbb{P}\end{array}}(1-g(p)),\quad\forall\; n\in\mathbb{N}.</math> '''Notation:''' a word of caution regarding the notation, in the literature one often identifies the set of sequences <math>\mathcal{A}</math> with the set <math>A</math> itself. This means one writes <math>\mathcal{A}=\{s:s\leq x\}</math> to define a sequence <math>\mathcal{A}=(a_n)</math>. Also in the literature the sum <math>A_d(x)</math> is sometimes notated as the cardinality <math>|A_d(x)|</math> of some set <math>A_d(x)</math>, while we have defined <math>A_d(x)</math> to be already the cardinality of this set. We used <math>\mathbb{P}</math> to denote the set of primes and <math>(a,b)</math> for the [[greatest common divisor]] of <math>a</math> and <math>b</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)