Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sinc function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == [[File:Si cos.svg|thumb|350px|right|The local maxima and minima (small white dots) of the unnormalized, red sinc function correspond to its intersections with the blue [[cosine function]].]] The [[zero crossing]]s of the unnormalized sinc are at non-zero integer multiples of {{pi}}, while zero crossings of the normalized sinc occur at non-zero integers. The local maxima and minima of the unnormalized sinc correspond to its intersections with the [[cosine]] function. That is, {{math|1={{sfrac|sin(''ξ'')|''ξ''}} = cos(''ξ'')}} for all points {{mvar|ξ}} where the derivative of {{math|{{sfrac|sin(''x'')|''x''}}}} is zero and thus a local extremum is reached. This follows from the derivative of the sinc function: <math display="block">\frac{d}{dx}\operatorname{sinc}(x) = \begin{cases} \dfrac{\cos(x) - \operatorname{sinc}(x)}{x}, & x \ne 0 \\0, & x = 0\end{cases}.</math> The first few terms of the infinite series for the {{mvar|x}} coordinate of the {{mvar|n}}-th extremum with positive {{mvar|x}} coordinate are {{Citation needed|date=January 2025}} <math display="block">x_n = q - q^{-1} - \frac{2}{3} q^{-3} - \frac{13}{15} q^{-5} - \frac{146}{105} q^{-7} - \cdots,</math> where <math display="block">q = \left(n + \frac{1}{2}\right) \pi,</math> and where odd {{mvar|n}} lead to a local minimum, and even {{mvar|n}} to a local maximum. Because of symmetry around the {{mvar|y}} axis, there exist extrema with {{mvar|x}} coordinates {{math|−''x<sub>n</sub>''}}. In addition, there is an absolute maximum at {{math|1=''ξ''<sub>0</sub> = (0, 1)}}. The normalized sinc function has a simple representation as the [[infinite product]]: <math display="block">\frac{\sin(\pi x)}{\pi x} = \prod_{n=1}^\infty \left(1 - \frac{x^2}{n^2}\right)</math> [[File:The cardinal sine function sinc(z) plotted in the complex plane from -2-2i to 2+2i.svg|alt=The cardinal sine function sinc(z) plotted in the complex plane from -2-2i to 2+2i|thumb|The cardinal sine function sinc(z) plotted in the complex plane from -2-2i to 2+2i]] and is related to the [[gamma function]] {{math|Γ(''x'')}} through [[Euler's reflection formula]]: <math display="block">\frac{\sin(\pi x)}{\pi x} = \frac{1}{\Gamma(1 + x)\Gamma(1 - x)}.</math> [[Euler]] discovered<ref>{{cite arXiv |last=Euler |first=Leonhard |title=On the sums of series of reciprocals |year=1735 |eprint=math/0506415}}</ref> that <math display="block">\frac{\sin(x)}{x} = \prod_{n=1}^\infty \cos\left(\frac{x}{2^n}\right),</math> and because of the product-to-sum identity<ref>{{cite journal |author1=Sanjar M. Abrarov |author2=Brendan M. Quine |title=Sampling by incomplete cosine expansion of the sinc function: Application to the Voigt/complex error function |year=2015 |journal=Appl. Math. Comput. |volume=258 |issue= |pages=425–435 |doi=10.1016/j.amc.2015.01.072 |arxiv=1407.0533 |bibcode=|url=https://www.sciencedirect.com/science/article/pii/S0096300315001046 |hdl-access= }}</ref> [[File:Sinc cplot.svg|thumb|[[Domain coloring]] plot of {{math|1=sinc ''z'' = {{sfrac|sin ''z''|''z''}}}}]] <math display="block">\prod_{n=1}^k \cos\left(\frac{x}{2^n}\right) = \frac{1}{2^{k-1}} \sum_{n=1}^{2^{k-1}} \cos\left(\frac{n - 1/2}{2^{k-1}} x \right),\quad \forall k \ge 1,</math> Euler's product can be recast as a sum <math display="block">\frac{\sin(x)}{x} = \lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^N \cos\left(\frac{n - 1/2}{N} x\right).</math> The [[continuous Fourier transform]] of the normalized sinc (to ordinary frequency) is {{math|[[rectangular function|rect]](''f'')}}: <math display="block">\int_{-\infty}^\infty \operatorname{sinc}(t) \, e^{-i 2 \pi f t}\,dt = \operatorname{rect}(f),</math> where the [[rectangular function]] is 1 for argument between −{{sfrac|1|2}} and {{sfrac|1|2}}, and zero otherwise. This corresponds to the fact that the [[sinc filter]] is the ideal ([[brick-wall filter|brick-wall]], meaning rectangular [[frequency response]]) [[low-pass filter]]. This Fourier integral, including the special case <math display="block">\int_{-\infty}^\infty \frac{\sin(\pi x)}{\pi x} \, dx = \operatorname{rect}(0) = 1</math> is an [[improper integral]] (see [[Dirichlet integral]]) and not a convergent [[Lebesgue integral]], as <math display="block">\int_{-\infty}^\infty \left|\frac{\sin(\pi x)}{\pi x} \right| \,dx = +\infty.</math> The normalized sinc function has properties that make it ideal in relationship to [[interpolation]] of [[sampling (signal processing)|sampled]] [[bandlimited]] functions: * It is an interpolating function, i.e., {{math|1=sinc(0) = 1}}, and {{math|1=sinc(''k'') = 0}} for nonzero [[Number#Integers|integer]] {{math|''k''}}. * The functions {{math|1=''x<sub>k</sub>''(''t'') = sinc(''t'' − ''k'')}} ({{mvar|k}} integer) form an [[orthonormal basis]] for [[bandlimited]] functions in the [[Lp space|function space]] {{math|'''''L'''''<sup>2</sup>('''R''')}}, with highest angular frequency {{math|1=''ω''<sub>H</sub> = π}} (that is, highest cycle frequency {{math|1=''f''<sub>H</sub> = {{sfrac|1|2}}}}). Other properties of the two sinc functions include: * The unnormalized sinc is the zeroth-order spherical [[Bessel function]] of the first kind, {{math|''j''<sub>0</sub>(''x'')}}. The normalized sinc is {{math|''j''<sub>0</sub>(π''x'')}}. * where {{math|Si(''x'')}} is the [[sine integral]], <math display="block">\int_0^x \frac{\sin(\theta)}{\theta}\,d\theta = \operatorname{Si}(x).</math> * {{math|''λ'' sinc(''λx'')}} (not normalized) is one of two linearly independent solutions to the linear [[ordinary differential equation]] <math display="block">x \frac{d^2 y}{d x^2} + 2 \frac{d y}{d x} + \lambda^2 x y = 0.</math> The other is {{math|{{sfrac|cos(''λx'')|''x''}}}}, which is not bounded at {{math|1=''x'' = 0}}, unlike its sinc function counterpart. * Using normalized sinc, <math display="block">\int_{-\infty}^\infty \frac{\sin^2(\theta)}{\theta^2}\,d\theta = \pi \quad \Rightarrow \quad \int_{-\infty}^\infty \operatorname{sinc}^2(x)\,dx = 1,</math> * <math>\int_{-\infty}^\infty \frac{\sin(\theta)}{\theta}\,d\theta = \int_{-\infty}^\infty \left( \frac{\sin(\theta)}{\theta} \right)^2 \,d\theta = \pi.</math> * <math>\int_{-\infty}^\infty \frac{\sin^3(\theta)}{\theta^3}\,d\theta = \frac{3\pi}{4}.</math> * <math>\int_{-\infty}^\infty \frac{\sin^4(\theta)}{\theta^4}\,d\theta = \frac{2\pi}{3}.</math> * The following improper integral involves the (not normalized) sinc function: <math display="block">\int_0^\infty \frac{dx}{x^n + 1} = 1 + 2\sum_{k=1}^\infty \frac{(-1)^{k+1}}{(kn)^2 - 1} = \frac{1}{\operatorname{sinc}(\frac{\pi}{n})}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)