Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Singular value
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Basic properties == For <math>A \in \mathbb{C}^{m \times n}</math>, and <math>i = 1,2, \ldots, \min \{m,n\}</math>. [[Min-max theorem#Min-max principle for singular values|Min-max theorem for singular values]]. Here <math>U: \dim(U) = i</math> is a subspace of <math>\mathbb{C}^n</math> of dimension <math>i</math>. :<math>\begin{align} \sigma_i(A) &= \min_{\dim(U)=n-i+1} \max_{\underset{\| x \|_2 = 1}{x \in U}} \left\| Ax \right\|_2. \\ \sigma_i(A) &= \max_{\dim(U)=i} \min_{\underset{\| x \|_2 = 1}{x \in U}} \left\| Ax \right\|_2. \end{align}</math> Matrix transpose and conjugate do not alter singular values. :<math>\sigma_i(A) = \sigma_i\left(A^\textsf{T}\right) = \sigma_i\left(A^*\right).</math> For any unitary <math>U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}.</math> :<math>\sigma_i(A) = \sigma_i(UAV).</math> Relation to eigenvalues: :<math>\sigma_i^2(A) = \lambda_i\left(AA^*\right) = \lambda_i\left(A^*A\right).</math> Relation to [[Trace (linear algebra)|trace]]: :<math>\sum_{i=1}^n \sigma_i^2=\text{tr}\ A^\ast A</math>. If <math>A^* A</math> is full rank, the product of singular values is <math>\det \sqrt{A^* A}</math>. If <math>A A^*</math> is full rank, the product of singular values is <math>\det\sqrt{ A A^*}</math>. If <math>A</math> is square and full rank, the product of singular values is <math>|\det A|</math>. If <math>A</math> is [[Normal matrix|normal]], then <math>\sigma(A) = |\lambda(A)|</math>, that is, its singular values are the absolute values of its eigenvalues. For a generic rectangular matrix <math>A</math>, let <math display="inline">\tilde{A} = \begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix}</math> be its augmented matrix. It has eigenvalues <math display="inline">\pm \sigma(A)</math> (where <math display="inline">\sigma(A)</math> are the singular values of <math display="inline">A</math>) and the remaining eigenvalues are zero. Let <math display="inline">A = U\Sigma V^*</math> be the singular value decomposition, then the eigenvectors of <math display="inline">\tilde{A}</math> are <math display="inline">\begin{bmatrix} \mathbf{u}_i \\ \pm\mathbf{v}_i \end{bmatrix}</math> for <math>\pm \sigma_i</math><ref>{{Cite book |last=Tao |first=Terence |title=Topics in random matrix theory |date=2012 |publisher=American Mathematical Society |isbn=978-0-8218-7430-1 |series=Graduate studies in mathematics |location=Providence, R.I}}</ref>{{Pg|page=52}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)