Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Skellam distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Derivation == The [[probability mass function]] of a [[Poisson distribution|Poisson-distributed]] random variable with mean ΞΌ is given by :<math> p(k;\mu)={\mu^k\over k!}e^{-\mu}.\, </math> for <math>k \ge 0</math> (and zero otherwise). The Skellam probability mass function for the difference of two independent counts <math>K=N_1-N_2</math> is the [[convolution]] of two Poisson distributions: ([[John Gordon Skellam|Skellam]], 1946) :<math> \begin{align} p(k;\mu_1,\mu_2) & =\sum_{n=-\infty}^\infty p(k+n;\mu_1)p(n;\mu_2) \\ & =e^{-(\mu_1+\mu_2)}\sum_{n=\max(0,-k)}^\infty {{\mu_1^{k+n}\mu_2^n}\over{n!(k+n)!}} \end{align} </math> Since the Poisson distribution is zero for negative values of the count <math>(p(N<0;\mu)=0)</math>, the second sum is only taken for those terms where <math>n\ge0</math> and <math>n+k\ge0</math>. It can be shown that the above sum implies that :<math>\frac{p(k;\mu_1,\mu_2)}{p(-k;\mu_1,\mu_2)}=\left(\frac{\mu_1}{\mu_2}\right)^k</math> so that: :<math> p(k;\mu_1,\mu_2)= e^{-(\mu_1+\mu_2)} \left({\mu_1\over\mu_2}\right)^{k/2}I_{|k|}(2\sqrt{\mu_1\mu_2}) </math> where ''I'' <sub>k</sub>(z) is the [[Bessel function#Modified Bessel functions : I.CE.B1.2C K.CE.B1|modified Bessel function]] of the first kind. The special case for <math>\mu_1=\mu_2(=\mu)</math> is given by Irwin (1937): :<math> p\left(k;\mu,\mu\right) = e^{-2\mu}I_{|k|}(2\mu). </math> Using the limiting values of the modified Bessel function for small arguments, we can recover the Poisson distribution as a special case of the Skellam distribution for <math>\mu_2=0</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)