Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Snub dodecahedron
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Cartesian coordinates== Let {{math|''ξ'' ≈ {{val|0.94315125924}}}} be the real zero of the [[cubic polynomial]] {{math|''x''<sup>3</sup> + 2''x''<sup>2</sup> − ''φ''<sup>2</sup>}}, where {{mvar|φ}} is the [[golden ratio]]. Let the point {{mvar|p}} be given by <math display=block>p= \begin{pmatrix} \varphi^2-\varphi^2\xi \\ -\varphi^3+\varphi\xi+2\varphi\xi^2 \\ \xi \end{pmatrix}. </math> Let the [[rotation matrix|rotation matrices]] {{math|''M''<sub>1</sub>}} and {{math|''M''<sub>2</sub>}} be given by <math display=block> M_1= \begin{pmatrix} \frac{1}{2\varphi} & -\frac{\varphi}{2} & \frac{1}{2} \\ \frac{\varphi}{2} & \frac{1}{2} & \frac{1}{2\varphi} \\ -\frac{1}{2} & \frac{1}{2\varphi} & \frac{\varphi}{2} \end{pmatrix}, \quad M_2= \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}. </math> {{math|''M''<sub>1</sub>}} represents the rotation around the axis {{math|(0, 1, ''φ'')}} through an angle of {{sfrac|2{{pi}}|5}} counterclockwise, while {{math|''M''<sub>2</sub>}} being a cyclic shift of {{math|(''x'', ''y'', ''z'')}} represents the rotation around the axis {{math|(1, 1, 1)}} through an angle of {{sfrac|2{{pi}}|3}}. Then the 60 vertices of the snub dodecahedron are the 60 images of point {{mvar|p}} under repeated multiplication by {{math|''M''<sub>1</sub>}} and/or {{math|''M''<sub>2</sub>}}, iterated to convergence. (The matrices {{math|''M''<sub>1</sub>}} and {{math|''M''<sub>2</sub>}} [[Generating set of a group|generate]] the 60 rotation matrices corresponding to [[icosahedral group|the 60 rotational symmetries]] of a [[regular icosahedron]].) The coordinates of the vertices are integral linear combinations of {{math|1, ''φ'', ''ξ'', ''φξ'', ''ξ''<sup>2</sup>}} and {{math|''φξ''<sup>2</sup>}}. The edge length equals <math display=block>2\xi\sqrt{1-\xi}\approx 0.449\,750\,618\,41.</math> Negating all coordinates gives the mirror image of this snub dodecahedron. As a volume, the snub dodecahedron consists of 80 triangular and 12 pentagonal pyramids. The volume {{math|''V''<sub>3</sub>}} of one triangular pyramid is given by: <math display=block> V_3 = \frac{1}{3}\varphi\left(3\xi^2-\varphi^2\right) \approx 0.027\,274\,068\,85, </math> and the volume {{math|''V''<sub>5</sub>}} of one pentagonal pyramid by: <math display=block> V_5 = \frac{1}{3}(3\varphi+1)\left(\varphi+3-2\xi-3\xi^2\right)\xi^3 \approx 0.103\,349\,665\,04. </math> The total volume is <math display=block>80V_3+12V_5 \approx 3.422\,121\,488\,76.</math> The circumradius equals <math display=block>\sqrt{4\xi^2-\varphi^2} \approx 0.969\,589\,192\,65.</math> The [[Midsphere|midradius]] equals {{mvar|ξ}}. This gives an interesting geometrical interpretation of the number {{mvar|ξ}}. The 20 "icosahedral" triangles of the snub dodecahedron described above are coplanar with the faces of a regular icosahedron. The midradius of this "circumscribed" icosahedron equals 1. This means that {{mvar|ξ}} is the ratio between the midradii of a snub dodecahedron and the icosahedron in which it is inscribed. The triangle–triangle dihedral angle is given by <math display=block> \theta_{33} = 180^\circ - \arccos\left(\frac23\xi+\frac13\right) \approx 164.175\,366\,056\,03^\circ. </math> The triangle–pentagon dihedral angle is given by <math display=block>\begin{align} \theta_{35} &= 180^\circ - \arccos\sqrt{\frac{-(4\varphi + 8)\xi^2 - (4\varphi + 8)\xi + 12\varphi + 19}{15}} \\[2pt] &\approx 152.929\,920\,275\,84^\circ. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)