Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Soft matter
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== History == The current understanding of soft matter grew from [[Albert Einstein|Albert Einstein's]] work on [[Brownian motion]],<ref>{{Cite journal |last=Einstein |first=Albert |date=1905 |title=Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen |trans-title=On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat |journal=Annalen der Physik |language=German |volume=322 |issue=8 |pages=549–560 |doi=10.1002/andp.19053220806|bibcode=1905AnP...322..549E |doi-access=free }}</ref><ref>{{Cite journal |last=Mezzenga |first=Raffaele |date=2021-12-22 |title=Grand Challenges in Soft Matter |journal=Frontiers in Soft Matter |volume=1 |pages=811842 |doi=10.3389/frsfm.2021.811842 |issn=2813-0499|doi-access=free }}</ref> understanding that a particle [[Suspension (chemistry)|suspended]] in a [[fluid]] must have a similar thermal energy to the fluid itself (of order of ''[[kT (energy)|kT]]''). This work built on established research into systems that would now be considered colloids.<ref>{{Cite book |last=McLeish |first=Tom |url=https://www.worldcat.org/oclc/1202271044 |title=Soft Matter: a Very Short Introduction |date=2020 |publisher=Oxford University Press |isbn=978-0-19-880713-1 |edition=1st |location=Oxford, United Kingdom |oclc=1202271044}}</ref> The crystalline optical properties of liquid crystals and their ability to flow were first described by [[Friedrich Reinitzer]] in 1888,<ref>{{Cite journal |last=Reinitzer |first=Friedrich |date=1888 |title=Beiträge zur Kenntniss des Cholesterins |url=http://link.springer.com/10.1007/BF01516710 |journal=Monatshefte für Chemie - Chemical Monthly |language=de |volume=9 |issue=1 |pages=421–441 |doi=10.1007/BF01516710 |s2cid=97166902 |issn=0026-9247}}</ref> and further characterized by [[Otto Lehmann (physicist)|Otto Lehmann]] in 1889.<ref>{{Cite journal |last=Lehmann |first=O. |date=1889-07-01 |title=Über fliessende Krystalle |url=https://www.degruyter.com/document/doi/10.1515/zpch-1889-0434/html |journal=Zeitschrift für Physikalische Chemie |language=en |volume=4U |issue=1 |pages=462–472 |doi=10.1515/zpch-1889-0434 |s2cid=92908969 |issn=2196-7156}}</ref> The experimental setup that Lehmann used to investigate the two melting points of cholesteryl benzoate are still used in the research of liquid crystals as of about 2019.<ref name=":14">{{Cite book |last=DiLisi |first=Gregory A |url=https://iopscience.iop.org/book/978-1-64327-684-7 |title=An Introduction to Liquid Crystals |date=2019 |publisher=IOP Publishing |isbn=978-1-64327-684-7 |doi=10.1088/2053-2571/ab2a6fch1|s2cid=239330818 }}</ref> In 1920, [[Hermann Staudinger]], recipient of the 1953 [[Nobel Prize in Chemistry]],<ref>Hermann Staudinger – Biographical. NobelPrize.org. Nobel Prize Outreach AB 2023. Mon. 13 Feb 2023. https://www.nobelprize.org/prizes/chemistry/1953/staudinger/biographical/ </ref> was the first person to suggest that polymers are formed through [[Covalent bond|covalent bonds]] that link smaller molecules together.<ref>{{Cite journal |last=Staudinger |first=H. |date=1920-06-12 |title=Über Polymerisation |url=https://onlinelibrary.wiley.com/doi/10.1002/cber.19200530627 |journal=Berichte der Deutschen Chemischen Gesellschaft (A and B Series) |language=en |volume=53 |issue=6 |pages=1073–1085 |doi=10.1002/cber.19200530627 |issn=0365-9488}}</ref> The idea of a [[macromolecule]] was unheard of at the time, with the scientific consensus being that the recorded high molecular weights of compounds like natural rubber were instead due to [[particle aggregation]].<ref>American Chemical Society International Historic Chemical Landmarks. Foundations of Polymer Science: Hermann Staudinger and Macromolecules. http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/staudingerpolymerscience.html (accessed Feb 13th, 2023).</ref> The use of [[hydrogel]] in the biomedical field was pioneered in 1960 by [[Drahoslav Lím]] and [[Otto Wichterle]].<ref>{{Cite book |url=https://www.worldcat.org/oclc/1050163199 |title=Hydrogels : recent advances |date=2018 |others=Vijay Kumar Thakur, Manju Kumari Thakur |isbn=978-981-10-6077-9 |location=Singapore |oclc=1050163199}}</ref> Together, they postulated that the chemical stability, ease of deformation, and permeability of certain polymer networks in aqueous environments would have a significant impact on medicine, and were the inventors of the soft [[contact lens]].<ref>{{Cite journal |last1=Wichterle |first1=O. |last2=Lím |first2=D. |date=1960 |title=Hydrophilic Gels for Biological Use |url=https://www.nature.com/articles/185117a0 |journal=Nature |language=en |volume=185 |issue=4706 |pages=117–118 |doi=10.1038/185117a0 |bibcode=1960Natur.185..117W |s2cid=4211987 |issn=0028-0836}}</ref> These seemingly separate fields were dramatically influenced and brought together by [[Pierre-Gilles de Gennes]]. The work of de Gennes across different forms of soft matter was key to understanding its [[Universality (dynamical systems)|universality]], where material properties are not based on the [[chemistry]] of the underlying [[structure]], more so on the [[Mesoscopic physics|mesoscopic]] structures the underlying chemistry creates.<ref name=":1" /> He extended the understanding of [[Phase transition|phase changes]] in liquid crystals, introduced the idea of [[reptation]] regarding the [[Relaxation (physics)|relaxation]] of polymer systems, and successfully mapped polymer behavior to that of the [[Ising model]].<ref name=":1">{{Cite journal |last1=Joanny |first1=Jean-François |last2=Cates |first2=Michael |date=2019 |title=Pierre-Gilles de Gennes. 24 October 1932—18 May 2007 |journal=Biographical Memoirs of Fellows of the Royal Society |language=en |volume=66 |pages=143–158 |doi=10.1098/rsbm.2018.0033 |s2cid=127231807 |issn=0080-4606|doi-access=free }}</ref><ref>{{Cite journal |last=de Gennes |first=P.G. |date=1972 |title=Exponents for the excluded volume problem as derived by the Wilson method |url=https://linkinghub.elsevier.com/retrieve/pii/0375960172901491 |journal=Physics Letters A |language=en |volume=38 |issue=5 |pages=339–340 |doi=10.1016/0375-9601(72)90149-1|bibcode=1972PhLA...38..339D }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)