Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Solvable group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Motivation == Historically, the word "solvable" arose from [[Galois theory]] and the proof of the general unsolvability of [[quintic]] equations. Specifically, a [[polynomial equation]] is solvable in [[Nth root|radicals]] if and only if the corresponding [[Galois group]] is solvable<ref>{{Cite book|last=Milne|url=https://www.jmilne.org/math/CourseNotes/FT.pdf|title=Field Theory|pages=45}}</ref> (note this theorem holds only in [[characteristic of a field|characteristic]] 0). This means associated to a polynomial <math>f \in F[x]</math> there is a tower of field extensions<blockquote><math>F = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_m=K</math></blockquote>such that # <math>F_i = F_{i-1}[\alpha_i]</math> where <math>\alpha_i^{m_i} \in F_{i-1}</math>, so <math>\alpha_i</math> is a solution to the equation <math>x^{m_i} - a</math> where <math>a \in F_{i-1}</math> # <math>F_m</math> contains a [[splitting field]] for <math>f(x)</math> === Example === The smallest Galois field extension of <math>\mathbb{Q}</math> containing the element<blockquote><math>a = \sqrt[5]{\sqrt{2} + \sqrt{3}}</math></blockquote>gives a solvable group. The associated field extensions<blockquote><math>\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})\left(e^{2i\pi/ 5}\right) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})\left(e^{2i\pi/ 5}, a\right)</math></blockquote>give a solvable group of Galois extensions containing the following [[composition factor]]s (where <math>1</math> is the identity permutation). * <math>\mathrm{Aut}\left(\mathbb{Q(\sqrt{2})}\right/\mathbb{Q}) \cong \mathbb{Z}/2 </math> with group action <math>f\left(\pm\sqrt{2}\right) = \mp\sqrt{2}, \ f^2 = 1</math>, and [[Minimal polynomial (field theory)|minimal polynomial]] <math>x^2 - 2</math> * <math>\mathrm{Aut}\left(\mathbb{Q(\sqrt{2},\sqrt{3})}\right/\mathbb{Q(\sqrt{2})}) \cong \mathbb{Z}/2 </math> with group action <math>g\left(\pm\sqrt{3}\right) = \mp\sqrt{3} ,\ g^2 = 1</math>, and minimal polynomial <math>x^2 - 3</math> * <math>\mathrm{Aut}\left( \mathbb{Q}(\sqrt{2}, \sqrt{3})\left(e^{2i\pi/ 5}\right)/ \mathbb{Q}(\sqrt{2}, \sqrt{3}) \right) \cong \mathbb{Z}/4 </math> with group action <math>h^n\left(e^{2im\pi/5}\right) = e^{2(n+1)mi\pi/5} , \ 0 \leq n \leq 3, \ h^4 = 1</math>, and minimal polynomial <math>x^4 + x^3+x^2+x+1 = (x^5 - 1)/(x-1)</math> containing the 5th roots of unity excluding <math>1</math> * <math>\mathrm{Aut}\left( \mathbb{Q}(\sqrt{2}, \sqrt{3})\left(e^{2i\pi/ 5}, a\right)/ \mathbb{Q}(\sqrt{2}, \sqrt{3})\left(e^{2i\pi/ 5}\right) \right) \cong \mathbb{Z}/5 </math> with group action <math>j^l(a) = e^{2li\pi/5}a, \ j^5 = 1</math>, and minimal polynomial <math>x^5 - \left(\sqrt{2} + \sqrt{3}\right)</math> Each of the defining group actions (for example, <math>fgh^3j^4 </math>) changes a single extension while keeping all of the other extensions fixed. The 80 group actions are the set <math>\{f^ag^bh^nj^l,\ 0 \leq a, b \leq 1,\ 0 \leq n \leq 3,\ 0 \leq l \leq 4 \}</math>. This group is not [[Abelian group|abelian]]. For example, <math>hj(a) = h(e^{2i\pi/5}a) = e^{4i\pi/5}a </math>, whilst <math>jh(a) = j(a) = e^{2i\pi/5}a</math>, and in fact, <math>jh = hj^3</math>. It is isomorphic to <math>(\mathbb{Z}_5 \rtimes_\varphi \mathbb{Z}_4) \times (\mathbb{Z}_2 \times \mathbb{Z}_2) </math>, where <math>\varphi_h(j) = hjh^{-1} = j^2 </math>, defined using the [[semidirect product]] and [[Direct product of groups|direct product]] of the [[cyclic group]]s. <math>\mathbb{Z}_4 </math> is not a normal subgroup.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)