Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Specific impulse
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Propulsion systems== ===Rockets=== For any chemical rocket engine, the momentum transfer efficiency depends heavily on the effectiveness of the [[rocket nozzle|nozzle]]; the nozzle is the primary means of converting reactant energy (e.g. thermal or pressure energy) into a flow of momentum all directed the same way. Therefore, nozzle shape and effectiveness has a great impact on total momentum transfer from the reaction mass to the rocket. Efficiency of conversion of input energy to reactant energy also matters; be that thermal energy in combustion engines or electrical energy in [[ion engines]], the engineering involved in converting such energy to outbound momentum can have high impact on specific impulse. Specific impulse in turn has deep impacts on the achievable delta-v and associated orbits achievable, and (by the rocket equation) mass fraction required to achieve a given delta-v. Optimizing the tradeoffs between mass fraction and specific impulse is one of the fundamental engineering challenges in rocketry. Although the specific impulse has units equivalent to velocity, it almost never corresponds to any physical velocity. In chemical and cold gas rockets, the shape of the [[rocket nozzle|nozzle]] has a high impact on the energy-to-momentum conversion, and is never perfect, and there are other sources of losses and inefficiencies (e.g. the details of the combustion in such engines). As such, the physical exhaust velocity is higher than the "effective exhaust velocity", i.e. that "velocity" suggested by the specific impulse. In any case, the momentum exchanged and the mass used to generate it ''are'' physically real measurements. Typically, rocket nozzles work better when the ambient pressure is lower, i.e. better in space than in atmosphere. Ion engines operate without a nozzle, although they have other sources of losses such that the momentum transferred is lower than the physical exhaust velocity. ===Cars=== Although the car industry almost never uses specific impulse on any practical level, the measure can be defined, and makes good contrast against other engine types. Car engines breathe external air to combust their fuel, and (via the wheels) react against the ground. As such, the only meaningful way to interpret "specific impulse" is as "thrust per fuelflow", although one must also specify if the force is measured at the crankshaft or at the wheels, since there are transmission losses. Such a measure corresponds to [[fuel mileage]]. ===Airplanes=== In an aerodynamic context, there are similarities to both cars and rockets. Like cars, airplane engines breathe outside air; unlike cars they react only against fluids flowing through the engine (including the propellers as applicable). As such, there are several possible ways to interpret "specific impulse": as thrust per fuel flow, as thrust per breathing-flow, or as thrust per "turbine-flow" (i.e. excluding air though the propeller/bypass fan). Since the air breathed is not a direct cost, with wide engineering leeway on how much to breathe, the industry traditionally chooses the "thrust per fuel flow" interpretation with its focus on cost efficiency. In this interpretation, the resulting specific impulse numbers are much higher than for rocket engines, although this comparison is essentially meaningless since the interpretations β with or without reaction mass β are so different. As with all kinds of engines, there are many engineering choices and tradeoffs that affect specific impulse. Nonlinear air resistance and the engine's inability to keep a high specific impulse at a fast burn rate are limiting factors to the fuel consumption rate. As with rocket engines, the interpretation of specific impulse as a "velocity" has no physical meaning. Since the usual interpretation excludes much of the reaction mass, the physical velocity of the reactants downstream is much lower than the I{{sub|sp}} "velocity".
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)