Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spherical cap
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Volume and surface area== The [[volume]] of the spherical cap and the area of the curved surface may be calculated using combinations of * The radius <math>r</math> of the sphere * The radius <math>a</math> of the base of the cap * The height <math>h</math> of the cap * The [[Spherical coordinate system|polar angle]] <math>\theta</math> between the rays from the center of the sphere to the apex of the cap (the pole) and the edge of the [[disk (mathematics)|disk]] forming the base of the cap. These variables are inter-related through the formulas <math> a = r \sin \theta</math>, <math>h = r ( 1 - \cos \theta )</math>, <math>2hr = a^2 + h^2</math>, and <math>2 h a = (a^2 + h^2)\sin \theta</math>. {| class="wikitable" ! ! Using <math>r</math> and <math>h</math> ! Using <math>a</math> and <math>h</math> ! Using <math>r</math> and <math>\theta</math> |- ! Volume | <math>V = \frac {\pi h^2}{3} (3r-h)</math> <ref name="handbook">{{citation|title=Handbook of Mathematics for Engineers and Scientists|first1=Andrei D|last1=Polyanin|first2=Alexander V.|last2=Manzhirov|publisher=CRC Press|year=2006|isbn=9781584885023|page=69|url=https://books.google.com/books?id=ge6nk9W0BCcC&pg=PA69}}.</ref> | <math>V = \frac{1}{6}\pi h (3a^2 + h^2)</math> | <math>V = \frac{\pi}{3} r^3 (2+\cos\theta) (1-\cos\theta)^2 </math> |- ! Area | <math>A = 2 \pi r h</math><ref name="handbook"/> | <math>A =\pi (a^2 + h^2)</math> | <math>A=2 \pi r^2 (1-\cos \theta)</math> |- ! Constraints | <math> 0 \leq h \leq 2 r </math> | <math> 0 \leq a, \; 0 \leq h </math> | <math> 0 \leq \theta \leq \pi, \; 0 \leq r</math> |} If <math>\phi</math> denotes the [[latitude]] in [[geographic coordinates]], then <math>\theta+\phi = \pi/2 = 90^\circ\,</math>, and <math>\cos \theta = \sin \phi</math>. === Deriving the surface area intuitively from the spherical sector volume === Note that aside from the calculus based argument below, the area of the spherical cap may be derived from [[Spherical sector#Volume|the volume <math>V_{sec}</math> of the spherical sector]], by an intuitive argument,<ref>{{cite web |last1=Shekhtman |first1=Zor |title=Unizor - Geometry3D - Spherical Sectors |url=https://www.youtube.com/watch?v=ts3J5onzvQg&t=8m54s |archive-url=https://ghostarchive.org/varchive/youtube/20211222/ts3J5onzvQg |archive-date=2021-12-22 |url-status=live|website=YouTube |publisher=Zor Shekhtman |access-date=31 Dec 2018}}{{cbignore}}</ref> as :<math>A = \frac{3}{r}V_{sec} = \frac{3}{r} \frac{2\pi r^2h}{3} = 2\pi rh\,.</math> The intuitive argument is based upon summing the total sector volume from that of infinitesimal [[Tetrahedron|triangular pyramids]]. Utilizing the [[Pyramid (geometry)#Volume|pyramid (or cone) volume]] formula of <math>V = \frac{1}{3} bh'</math>, where <math>b</math> is the infinitesimal [[area]] of each pyramidal base (located on the surface of the sphere) and <math>h'</math> is the height of each pyramid from its base to its apex (at the center of the sphere). Since each <math>h'</math>, in the limit, is constant and equivalent to the radius <math>r</math> of the sphere, the sum of the infinitesimal pyramidal bases would equal the area of the spherical sector, and: :<math>V_{sec} = \sum{V} = \sum\frac{1}{3} bh' = \sum\frac{1}{3} br = \frac{r}{3} \sum b = \frac{r}{3} A</math> ===Deriving the volume and surface area using calculus === [[File:Spherical cap from rotation.svg|thumb|Rotating the green area creates a spherical cap with height <math>h</math> and sphere radius <math>r</math>.]] The volume and area formulas may be derived by examining the rotation of the function :<math>f(x)=\sqrt{r^2-(x-r)^2}=\sqrt{2rx-x^2}</math> for <math>x \in [0,h]</math>, using the formulas the [[Surface of revolution|surface of the rotation]] for the area and the [[Solid of revolution|solid of the revolution]] for the volume. The area is :<math>A = 2\pi\int_0^h f(x) \sqrt{1+f'(x)^2} \,dx </math> The derivative of <math>f</math> is :<math>f'(x) = \frac{r-x}{\sqrt{2rx-x^2}} </math> and hence :<math>1+f'(x)^2 = \frac{r^2}{2rx-x^2} </math> The formula for the area is therefore :<math>A = 2\pi\int_0^h \sqrt{2rx-x^2} \sqrt{\frac{r^2}{2rx-x^2}} \,dx = 2\pi \int_0^h r\,dx = 2\pi r \left[x\right]_0^h = 2 \pi r h </math> The volume is :<math>V = \pi \int_0^h f(x)^2 \,dx = \pi \int_0^h (2rx-x^2) \,dx = \pi \left[rx^2-\frac13x^3\right]_0^h = \frac{\pi h^2}{3} (3r - h)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)