Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spinor bundle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Formal definition== Let <math>({\mathbf P},F_{\mathbf P})</math> be a [[spin structure]] on a [[Riemannian manifold]] <math>(M, g),\,</math>that is, an [[equivariant]] lift of the oriented [[orthonormal frame bundle]] <math>\mathrm F_{SO}(M)\to M</math> with respect to the double covering <math>\rho\colon {\mathrm {Spin}}(n)\to {\mathrm {SO}}(n)</math> of the [[special orthogonal group]] by the [[spin group]]. The '''spinor bundle''' <math>{\mathbf S}\,</math> is defined <ref>{{citation | last1=Friedrich|first1=Thomas| title = Dirac Operators in Riemannian Geometry| publisher=[[American Mathematical Society]] | year=2000|isbn=978-0-8218-2055-1}} page 53 </ref> to be the [[complex vector bundle]] <math display=block>{\mathbf S}={\mathbf P}\times_{\kappa}\Delta_n\,</math> associated to the [[spin structure]] <math>{\mathbf P}</math> via the [[spin representation]] <math>\kappa\colon {\mathrm {Spin}}(n)\to {\mathrm U}(\Delta_n),\,</math> where <math>{\mathrm U}({\mathbf W})\,</math> denotes the [[Group (mathematics)|group]] of [[unitary operator]]s acting on a [[Hilbert space]] <math>{\mathbf W}.\,</math> The spin representation <math>\kappa</math> is a faithful and [[unitary representation]] of the group <math>{\mathrm {Spin}}(n).</math><ref>{{citation | last1=Friedrich|first1=Thomas| title = Dirac Operators in Riemannian Geometry| publisher=[[American Mathematical Society]] | year=2000|isbn=978-0-8218-2055-1}} pages 20 and 24</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)