Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spiral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Two-dimensional== {{main|List of spirals}} [[File:Six types of spirals.png|thumb|Spirals generated by 6 mathematical relationships between radius and angle.]] A [[two-dimensional]], or plane, spiral may be easily described using [[polar coordinates]], where the [[radius]] <math>r</math> is a [[monotonic]] [[continuous function]] of angle <math>\varphi</math>: * <math>r=r(\varphi)\; .</math> The circle would be regarded as a [[degenerate (mathematics)|degenerate]] case (the [[Function (mathematics)|function]] not being strictly monotonic, but rather [[Constant (mathematics)|constant]]). In ''<math>x</math>-<math>y</math>-coordinates'' the curve has the parametric representation: * <math>x=r(\varphi)\cos\varphi \ ,\qquad y=r(\varphi)\sin\varphi\; .</math> === Examples === Some of the most important sorts of two-dimensional spirals include: * The [[Archimedean spiral]]: <math>r=a \varphi </math> * The [[hyperbolic spiral]]: <math>r = a/ \varphi</math> * [[Fermat's spiral]]: <math>r= a\varphi^{1/2}</math> * The [[Lituus (mathematics)|lituus]]: <math>r = a\varphi^{-1/2}</math> * The [[logarithmic spiral]]: <math>r=ae^{k\varphi}</math> * The [[Cornu spiral]] or ''clothoid'' * The [[Fibonacci spiral]] and [[golden spiral]] * The [[Spiral of Theodorus]]: an approximation of the Archimedean spiral composed of contiguous right triangles * The [[involute]] of a circle <gallery> Image:Archimedean spiral.svg|Archimedean spiral Image:Hyperspiral.svg|hyperbolic spiral Image:Fermat's spiral.svg|Fermat's spiral Image:Lituus.svg|lituus Image:Logarithmic Spiral Pylab.svg|logarithmic spiral Image:Cornu Spiral.svg|Cornu spiral Image:Spiral of Theodorus.svg|spiral of Theodorus Image:Fibonacci_spiral.svg|Fibonacci Spiral (golden spiral) Image:Archimedean-involute-circle-spirals-comparison.svg|The involute of a circle (black) is not identical to the Archimedean spiral (red). </gallery> [[File:Schraublinie-hyp-spirale.svg|thumb|upright=0.6|Hyperbolic spiral as central projection of a helix]] An ''Archimedean spiral'' is, for example, generated while coiling a carpet.<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Archimedean Spiral|url=https://mathworld.wolfram.com/ArchimedeanSpiral.html|access-date=2020-10-08|website=mathworld.wolfram.com|language=en}}</ref> A ''hyperbolic spiral'' appears as image of a helix with a special central projection (see diagram). A hyperbolic spiral is some times called ''reciproke'' spiral, because it is the image of an Archimedean spiral with a circle-inversion (see below).<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Hyperbolic Spiral|url=https://mathworld.wolfram.com/HyperbolicSpiral.html|access-date=2020-10-08|website=mathworld.wolfram.com|language=en}}</ref> The name ''logarithmic spiral'' is due to the equation <math>\varphi=\tfrac{1}{k}\cdot \ln \tfrac{r}{a}</math>. Approximations of this are found in nature. Spirals which do not fit into this scheme of the first 5 examples: A ''Cornu spiral'' has two asymptotic points.<br> The ''spiral of Theodorus'' is a polygon.<br> The ''Fibonacci Spiral'' consists of a sequence of circle arcs.<br> The ''involute of a circle'' looks like an Archimedean, but is not: see [[Involute#Examples]]. === Geometric properties === The following considerations are dealing with spirals, which can be described by a polar equation <math>r=r(\varphi)</math>, especially for the cases <math>r(\varphi)=a\varphi^n</math> (Archimedean, hyperbolic, Fermat's, lituus spirals) and the logarithmic spiral <math>r=ae^{k\varphi}</math>. [[File:Sektor-steigung-pk-def.svg|thumb|Definition of sector (light blue) and polar slope angle <math>\alpha</math>]] ;Polar slope angle The angle <math>\alpha</math> between the spiral tangent and the corresponding polar circle (see diagram) is called ''angle of the polar slope'' and <math>\tan \alpha</math> the ''polar slope''. From [[polar coordinate system#Vector calculus|vector calculus in polar coordinates]] one gets the formula :<math>\tan\alpha=\frac{r'}{r}\ .</math> Hence the slope of the spiral <math>\;r=a\varphi^n \;</math> is * <math>\tan\alpha=\frac{n}{\varphi}\ .</math> In case of an ''Archimedean spiral'' (<math>n=1</math>) the polar slope is <math>\; \tan\alpha=\tfrac{1}{\varphi}\ .</math> In a ''logarithmic spiral'', <math>\ \tan\alpha=k\ </math> is constant. ;Curvature The curvature <math>\kappa</math> of a curve with polar equation <math>r=r(\varphi)</math> is :<math>\kappa = \frac{r^2 + 2(r')^2 - r\; r''}{(r^2+(r')^2)^{3/2}}\ .</math> For a spiral with <math>r=a\varphi^n</math> one gets * <math>\kappa = \dotsb = \frac{1}{a\varphi^{n-1}}\frac{\varphi^2+n^2+n}{(\varphi^2+n^2)^{3/2}}\ .</math> In case of <math>n=1</math> ''(Archimedean spiral)'' <math>\kappa=\tfrac{\varphi^2+2}{a(\varphi^2+1)^{3/2}}</math>.<br> Only for <math>-1<n<0 </math> the spiral has an ''inflection point''. The curvature of a ''logarithmic spiral'' <math>\; r=a e^{k\varphi} \;</math> is <math>\; \kappa=\tfrac{1}{r\sqrt{1+k^2}} \; .</math> ;Sector area The area of a sector of a curve (see diagram) with polar equation <math>r=r(\varphi)</math> is :<math>A=\frac{1}{2}\int_{\varphi_1}^{\varphi_2} r(\varphi)^2\; d\varphi\ .</math> For a spiral with equation <math>r=a\varphi^n\; </math> one gets * <math>A=\frac{1}{2}\int_{\varphi_1}^{\varphi_2} a^2\varphi^{2n}\; d\varphi =\frac{a^2}{2(2n+1)}\big(\varphi_2^{2n+1}- \varphi_1^{2n+1}\big)\ , \quad \text{if}\quad n\ne-\frac{1}{2}, </math> :<math>A=\frac{1}{2}\int_{\varphi_1}^{\varphi_2} \frac{a^2}{\varphi}\; d\varphi =\frac{a^2}{2}(\ln\varphi_2-\ln\varphi_1)\ ,\quad \text{if} \quad n=-\frac{1}{2}\ .</math> The formula for a ''logarithmic spiral'' <math>\; r=a e^{k\varphi} \;</math> is <math>\ A=\tfrac{r(\varphi_2)^2-r(\varphi_1)^2)}{4k}\ .</math> ;Arc length The length of an arc of a curve with polar equation <math>r=r(\varphi)</math> is :<math>L=\int\limits_{\varphi_1}^{\varphi_2}\sqrt{\left(r^\prime(\varphi)\right)^2+r^2(\varphi)}\,\mathrm{d}\varphi \ .</math> For the spiral <math>r=a\varphi^n\; </math> the length is * <math>L=\int_{\varphi_1}^{\varphi_2} \sqrt{\frac{n^2r^2}{\varphi^2} +r^2}\; d\varphi = a\int\limits_{\varphi_1}^{\varphi_2}\varphi^{n-1}\sqrt{n^2+\varphi^2}d\varphi \ .</math> Not all these integrals can be solved by a suitable table. In case of a Fermat's spiral, the integral can be expressed by [[elliptic integral]]s only. The arc length of a ''logarithmic spiral'' <math>\; r=a e^{k\varphi} \;</math> is <math>\ L=\tfrac{\sqrt{k^2+1}}{k}\big(r(\varphi_2)-r(\varphi_1)\big) \ .</math> ;Circle inversion The [[Circle inversion|inversion at the unit circle]] has in polar coordinates the simple description: <math>\ (r,\varphi) \mapsto (\tfrac{1}{r},\varphi)\ </math>. * The image of a spiral <math>\ r= a\varphi^n\ </math> under the inversion at the unit circle is the spiral with polar equation <math>\ r= \tfrac{1}{a}\varphi^{-n}\ </math>. For example: The inverse of an Archimedean spiral is a hyperbolic spiral. :A logarithmic spiral <math>\; r=a e^{k\varphi} \;</math> is mapped onto the logarithmic spiral <math>\; r=\tfrac{1}{a} e^{-k\varphi} \; .</math> === Bounded spirals === [[File:Spiral-arctan-1-2.svg|thumb|upright=1.4|Bounded spirals:<br> <math>r=a \arctan(k\varphi)</math> (left), <br> <math>r=a (\arctan(k\varphi)+\pi/2) </math> (right)]] The function <math>r(\varphi)</math> of a spiral is usually strictly monotonic, continuous and un[[Bounded function|bounded]]. For the standard spirals <math>r(\varphi)</math> is either a power function or an exponential function. If one chooses for <math>r(\varphi)</math> a ''bounded'' function, the spiral is bounded, too. A suitable bounded function is the [[arctan]] function: ;Example 1 Setting <math>\;r=a \arctan(k\varphi)\;</math> and the choice <math>\;k=0.1, a=4, \;\varphi\ge 0\;</math> gives a spiral, that starts at the origin (like an Archimedean spiral) and approaches the circle with radius <math>\;r=a\pi/2\;</math> (diagram, left). ;Example 2 For <math>\;r=a (\arctan(k\varphi)+\pi/2)\;</math> and <math>\;k=0.2, a=2,\; -\infty<\varphi<\infty\;</math> one gets a spiral, that approaches the origin (like a hyperbolic spiral) and approaches the circle with radius <math>\;r=a\pi\;</math> (diagram, right).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)