Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Square triangular number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Solution as a Pell equation== Write <math>N_k</math> for the <math>k</math>th square triangular number, and write <math>s_k</math> and <math>t_k</math> for the sides of the corresponding square and triangle, so that {{bi|left=1.6|<math>\displaystyle N_k = s_k^2 = \frac{t_k(t_k+1)}{2}.</math>}} Define the ''triangular root'' of a triangular number <math>N=\tfrac{n(n+1)}{2}</math> to be <math>n</math>. From this definition and the quadratic formula, {{bi|left=1.6|<math>\displaystyle n = \frac{\sqrt{8N + 1} - 1}{2}.</math>}} Therefore, <math>N</math> is triangular (<math>n</math> is an integer) [[if and only if]] <math>8N+1</math> is square. Consequently, a square number <math>M^2</math> is also triangular if and only if <math>8M^2+1</math> is square, that is, there are numbers <math>x</math> and <math>y</math> such that <math>x^2-8y^2=1</math>. This is an instance of the [[Pell equation]] <math>x^2-ny^2=1</math> with <math>n=8</math>. All Pell equations have the trivial solution <math>x=1,y=0</math> for any <math>n</math>; this is called the zeroth solution, and indexed as <math>(x_0,y_0)=(1,0)</math>. If <math>(x_k,y_k)</math> denotes the <math>k</math>th nontrivial solution to any Pell equation for a particular <math>n</math>, it can be shown by the method of descent that the next solution is {{bi|left=1.6|<math>\displaystyle \begin{align} x_{k+1} &= 2x_k x_1 - x_{k-1}, \\ y_{k+1} &= 2y_k x_1 - y_{k-1}. \end{align}</math>}} Hence there are infinitely many solutions to any Pell equation for which there is one non-trivial one, which is true whenever <math>n</math> is not a square. The first non-trivial solution when <math>n=8</math> is easy to find: it is <math>(3,1)</math>. A solution <math>(x_k,y_k)</math> to the Pell equation for <math>n=8</math> yields a square triangular number and its square and triangular roots as follows: {{bi|left=1.6|<math>\displaystyle s_k = y_k , \quad t_k = \frac{x_k - 1}{2}, \quad N_k = y_k^2.</math>}} Hence, the first square triangular number, derived from <math>(3,1)</math>, is <math>1</math>, and the next, derived from <math>6\cdot (3,1)-(1,0)-(17,6)</math>, is <math>36</math>. The sequences <math>N_k</math>, <math>s_k</math> and <math>t_k</math> are the [[OEIS]] sequences {{OEIS2C|id=A001110}}, {{OEIS2C|id=A001109}}, and {{OEIS2C|id=A001108}} respectively.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)