Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Star refinement
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definitions== The general definition makes sense for arbitrary coverings and does not require a topology. Let <math>X</math> be a set and let <math>\mathcal U</math> be a [[cover (topology)|covering]] of <math>X,</math> that is, <math display="inline">X = \bigcup \mathcal U.</math> Given a subset <math>S</math> of <math>X,</math> the '''star''' of <math>S</math> with respect to <math>\mathcal U</math> is the union of all the sets <math>U \in \mathcal U</math> that intersect <math>S,</math> that is, <math display=block>\operatorname{st}(S, \mathcal U) = \bigcup\big\{U \in \mathcal U: S\cap U \neq \varnothing\big\}.</math> Given a point <math>x \in X,</math> we write <math>\operatorname{st}(x,\mathcal U)</math> instead of <math>\operatorname{st}(\{x\}, \mathcal U).</math> A covering <math>\mathcal U</math> of <math>X</math> is a [[refinement (topology)|refinement]] of a covering <math>\mathcal V</math> of <math>X</math> if every <math>U \in \mathcal U</math> is contained in some <math>V \in \mathcal V.</math> The following are two special kinds of refinement. The covering <math>\mathcal U</math> is called a '''barycentric refinement''' of <math>\mathcal V</math> if for every <math>x \in X</math> the star <math>\operatorname{st}(x,\mathcal U)</math> is contained in some <math>V \in \mathcal V.</math>{{sfn|Dugundji|1966|loc=Definition VIII.3.1, p. 167}}{{sfn|Willard|2004|loc=Definition 20.1}} The covering <math>\mathcal U</math> is called a '''star refinement''' of <math>\mathcal V</math> if for every <math>U \in \mathcal U</math> the star <math>\operatorname{st}(U, \mathcal U)</math> is contained in some <math>V \in \mathcal V.</math>{{sfn|Dugundji|1966|loc=Definition VIII.3.3, p. 167}}{{sfn|Willard|2004|loc=Definition 20.1}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)