Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stratification (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==In mathematical logic== In [[mathematical logic]], '''stratification''' is any consistent assignment of numbers to [[Predicate (logic)|predicate]] symbols guaranteeing that a unique formal [[Interpretation (logic)|interpretation]] of a logical theory exists. Specifically, we say that a set of [[Clause (logic)|clauses]] of the form <math>Q_1 \wedge \dots \wedge Q_n \wedge \neg Q_{n+1} \wedge \dots \wedge \neg Q_{n+m} \rightarrow P</math> is stratified if and only if there is a stratification assignment S that fulfills the following conditions: # If a predicate P is positively derived from a predicate Q (i.e., P is the head of a rule, and Q occurs positively in the body of the same rule), then the stratification number of P must be greater than or equal to the stratification number of Q, in short <math>S(P) \geq S(Q)</math>. # If a predicate P is derived from a negated predicate Q (i.e., P is the head of a rule, and Q occurs negatively in the body of the same rule), then the stratification number of P must be greater than the stratification number of Q, in short <math>S(P) > S(Q)</math>. The notion of stratified negation leads to a very effective operational semantics for stratified programs in terms of the stratified least fixpoint, that is obtained by iteratively applying the fixpoint operator to each ''stratum'' of the program, from the lowest one up. Stratification is not only useful for guaranteeing unique interpretation of [[Horn clause]] theories.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)