Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
String field theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Light-cone string field theory == Light-cone string field theories were introduced by [[Stanley Mandelstam]]<ref>{{cite journal | last=Mandelstam | first=S. | title=Interacting-string picture of dual-resonance models | journal=Nuclear Physics B | publisher=Elsevier BV | volume=64 | year=1973 | issn=0550-3213 | doi=10.1016/0550-3213(73)90622-6 | bibcode=1973NuPhB..64..205M | pages=205β235}}</ref><ref>{{cite journal | last=Mandelstam | first=S. | title=Interacting-string picture of the Neveu-Schwarz-Ramond model | journal=Nuclear Physics B | publisher=Elsevier BV | volume=69 | issue=1 | year=1974 | issn=0550-3213 | doi=10.1016/0550-3213(74)90127-8 | bibcode=1974NuPhB..69...77M | pages=77β106| s2cid=120638932 | url=https://escholarship.org/uc/item/73m8j1dz }}</ref> and developed by Mandelstam, [[Michael Green (physicist)|Michael Green]], [[John Henry Schwarz|John Schwarz]] and Lars Brink.<ref>{{cite journal | last1=Green | first1=Michael B. | last2=Schwarz | first2=John H. | title=Supersymmetric dual string theory: (II). Vertices and trees| journal=Nuclear Physics B | publisher=Elsevier BV | volume=198 | issue=2 | year=1982 | issn=0550-3213 | doi=10.1016/0550-3213(82)90556-9 | bibcode=1982NuPhB.198..252G | pages=252β268}}</ref><ref>{{cite journal | last1=Green | first1=Michael B. | last2=Schwarz | first2=John H. | title=Superstring interactions | journal=Nuclear Physics B | publisher=Elsevier BV | volume=218 | issue=1 | year=1983 | issn=0550-3213 | doi=10.1016/0550-3213(83)90475-3 | bibcode=1983NuPhB.218...43G | pages=43β88}}</ref><ref>{{cite journal | last1=Green | first1=Michael B. | last2=Schwarz | first2=John H. | last3=Brink | first3=Lars | title=Superfield theory of type (II) superstrings | journal=Nuclear Physics B | publisher=Elsevier BV | volume=219 | issue=2 | year=1983 | issn=0550-3213 | doi=10.1016/0550-3213(83)90651-x | bibcode=1983NuPhB.219..437G | pages=437β478}}</ref><ref>{{cite journal | last1=Green | first1=Michael B. | last2=Schwarz | first2=John H. | title=Superstring field theory | journal=Nuclear Physics B | publisher=Elsevier BV | volume=243 | issue=3 | year=1984 | issn=0550-3213 | doi=10.1016/0550-3213(84)90488-7 | bibcode=1984NuPhB.243..475G | pages=475β536}}</ref><ref>{{cite journal | last=Mandelstam | first=Stanley | title=Interacting-String Picture of the Fermionic String | journal=Progress of Theoretical Physics Supplement | publisher=Oxford University Press (OUP) | volume=86 | year=1986 | issn=0375-9687 | doi=10.1143/ptps.86.163 | bibcode=1986PThPS..86..163M | pages=163β170|doi-access=free}}</ref> An explicit description of the second-quantization of the light-cone string was given by [[Michio Kaku]] and [[Keiji Kikkawa]].<ref>{{cite journal | last1=Kaku | first1=Michio | last2=Kikkawa | first2=K. | title=Field theory of relativistic strings. I. Trees | journal=Physical Review D | publisher=American Physical Society (APS) | volume=10 | issue=4 | date=1974-08-15 | issn=0556-2821 | doi=10.1103/physrevd.10.1110 | bibcode=1974PhRvD..10.1110K | pages=1110β1133}}</ref><ref>{{cite journal | last1=Kaku | first1=Michio | last2=Kikkawa | first2=K. | title=Field theory of relativistic strings. II. Loops and Pomerons | journal=Physical Review D | publisher=American Physical Society (APS) | volume=10 | issue=6 | date=1974-09-15 | issn=0556-2821 | doi=10.1103/physrevd.10.1823 | bibcode=1974PhRvD..10.1823K | pages=1823β1843}}</ref> Light-cone string field theories were the first string field theories to be constructed and are based on the simplicity of string scattering in light-cone gauge. For example, in the [[bosonic string theory|bosonic closed string]] case, the worldsheet scattering diagrams naturally take a Feynman diagram-like form, being built from two ingredients, a [[propagator]], ::[[Image:Light Cone String Propagator.svg]] and two vertices for splitting and joining strings, which can be used to glue three propagators together, ::[[Image:Closed String Light Cone Vertex.svg]] These vertices and propagators produce a single cover of the moduli space of <math>n</math>-point closed string scattering amplitudes so no higher order vertices are required.<ref>{{cite journal | last1=D'Hoker | first1=Eric | last2=Giddings | first2=Steven B. | title=Unitarity of the closed bosonic Polyakov string | journal=Nuclear Physics B | publisher=Elsevier BV | volume=291 | year=1987 | issn=0550-3213 | doi=10.1016/0550-3213(87)90466-4 | bibcode=1987NuPhB.291...90D | pages=90β112}}</ref> Similar vertices exist for the open string. When one considers light-cone quantized ''superstrings'', the discussion is more subtle as divergences can arise when the light-cone vertices collide.<ref>{{cite journal | last1=Greensite | first1=J. | last2=Klinkhamer | first2=F.R. | title=New interactions for superstrings | journal=Nuclear Physics B | publisher=Elsevier BV | volume=281 | issue=1β2 | year=1987 | issn=0550-3213 | doi=10.1016/0550-3213(87)90256-2 | bibcode=1987NuPhB.281..269G | pages=269β288}}</ref> To produce a consistent theory, it is necessary to introduce higher order vertices, called contact terms, to cancel the divergences. Light-cone string field theories have the disadvantage that they break manifest [[Lorentz invariance]]. However, in backgrounds with [[light-like]] [[Killing vector field|Killing vectors]], they can considerably simplify the quantization of the string action. Moreover, until the advent of the Berkovits string<ref>{{cite journal | last=Berkovits | first=Nathan | title=Super-Poincare covariant quantization of the superstring | journal=Journal of High Energy Physics | volume=2000 | issue=4 | date=2000-04-15 | issn=1029-8479 | doi=10.1088/1126-6708/2000/04/018 | pages=018|arxiv=hep-th/0001035| bibcode=2000JHEP...04..018B |doi-access=free}}</ref> it was the only known method for quantizing strings in the presence of [[RamondβRamond field]]s. In recent research, light-cone string field theory played an important role in understanding strings in pp-wave backgrounds.<ref>M. Spradlin and A. Volovich, "Light-cone string field theory in a plane wave", Lectures given at ICTP Spring School on Superstring Theory and Related Topics, Trieste, Italy, 31 Mar β 8 Apr (2003) hep-th/0310033.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)