Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stroboscope
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Mechanical== In its simplest mechanical form, a stroboscope can be a rotating cylinder (or bowl with a raised edge) with evenly spaced holes or slots placed in the line of sight between the observer and the moving object. The observer looks through the holes/slots on the near and far side at the same time, with the slots/holes moving in opposite directions. When the holes/slots are aligned on opposite sides, the object is visible to the observer. Alternately, a single moving hole or slot can be used with a fixed/stationary hole or slot. The stationary hole or slot limits the light to a single viewing path and reduces glare from light passing through other parts of the moving hole/slot. Viewing through a single line of holes/slots does not work, since the holes/slots appear to just sweep across the object without a strobe effect. The rotational speed is adjusted so that it becomes synchronised with the movement of the observed system, which seems to slow and stop. The illusion is caused by temporal [[aliasing]], commonly known as the [[stroboscopic effect]]. === Electronic === In electronic versions, the perforated disc is replaced by a [[Strobe light|lamp]] capable of emitting brief and rapid flashes of light. Typically a gas-discharge or solid-state lamp is used, because they are capable of emitting light nearly instantly when power is applied, and extinguishing just as fast when the power is removed. By comparison, [[incandescent lamp]]s have a brief warm-up when energized, followed by a cool-down period when power is removed. These delays result in smearing and blurring of detail of objects partially illuminated during the warm-up and cool-down periods. For most applications, incandescent lamps are too slow for clear stroboscopic effects. Yet when operated from an AC source they are mostly fast enough to cause audible hum (at double mains frequency) on [[Sound-on-film#Optical analog formats|optical audio playback]] such as on film projection. The [[frequency]] of the flash is adjusted so that it is an equal to, or a [[unit fraction]] of the object's cyclic speed, at which point the object is seen to be either stationary or moving slowly backward or forward, depending on the flash frequency. [[Neon lamp]]s or [[light-emitting diode]]s are commonly used for low-intensity strobe applications. Neon lamps were more common before the development of solid-state electronics, but are being replaced by LEDs in most low-intensity strobe applications. [[Xenon flash lamp]]s are used for medium- and high-intensity strobe applications. Sufficiently rapid or bright flashing may require active cooling such as forced-air or water cooling to prevent the xenon flash lamp from melting.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)