Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Student's t-distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definitions == ===Probability density function=== '''Student's {{mvar|t}} distribution''' has the [[probability density function]] (PDF) given by : <math>f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu} \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-(\nu + 1)/2},</math> where <math>\nu</math> is the number of ''[[degrees of freedom (statistics)|degrees of freedom]]'', and <math>\Gamma</math> is the [[gamma function]]. This may also be written as : <math>f(t) = \frac{1}{\sqrt{\nu}\,\mathrm{B}\left(\frac{1}{2}, \frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2},</math> where <math>\mathrm{B}</math> is the [[beta function]]. In particular for integer valued degrees of freedom <math>\nu</math> we have: For <math>\nu > 1</math> and even, : <math>\frac{\Gamma\left(\frac{\nu + 1}{2}\right)}{\sqrt{\pi\nu}\, \Gamma\left(\frac{\nu}{2}\right)} = \frac{1}{2\sqrt{\nu}} \cdot \frac{(\nu - 1) \cdot (\nu - 3) \cdots 5 \cdot 3}{(\nu - 2) \cdot (\nu - 4) \cdots 4 \cdot 2}.</math> For <math>\nu > 1</math> and odd, : <math>\frac{\Gamma\left(\frac{\nu + 1}{2}\right)}{\sqrt{\pi\nu}\, \Gamma\left(\frac{\nu}{2}\right)} = \frac{1}{\pi \sqrt{\nu}} \cdot \frac{(\nu - 1) \cdot (\nu - 3) \cdots 4 \cdot 2}{(\nu - 2) \cdot (\nu - 4) \cdots 5 \cdot 3}.</math> The probability density function is [[Symmetric distribution|symmetric]], and its overall shape resembles the bell shape of a normally distributed variable with mean 0 and variance 1, except that it is a bit lower and wider. As the number of degrees of freedom grows, the {{mvar|t}} distribution approaches the normal distribution with mean 0 and variance 1. For this reason <math>{\nu}</math> is also known as the normality parameter.<ref>{{cite book |last=Kruschke |first=J. K. |author-link=John K. Kruschke |year=2015 |title=Doing Bayesian Data Analysis |edition=2nd |publisher=Academic Press |isbn=9780124058880 |oclc=959632184}}</ref> The following images show the density of the {{mvar|t}} distribution for increasing values of <math>\nu .</math> The normal distribution is shown as a blue line for comparison. Note that the {{mvar|t}} distribution (red line) becomes closer to the normal distribution as <math>\nu</math> increases. {{Multiple image | align = center | caption_align = center | header = Density of the {{mvar|t}} distribution (red) for 1, 2, 3, 5, 10, and 30 degrees of freedom compared to the standard normal distribution (blue).<br>Previous plots shown in green. | perrow = 3 | image1 = T distribution 1df enhanced.svg | image2 = T distribution 2df enhanced.svg | image3 = T distribution 3df enhanced.svg | image4 = T distribution 5df enhanced.svg | image5 = T distribution 10df enhanced.svg | image6 = T distribution 30df enhanced.svg | caption1 = 1 degree of freedom | caption2 = 2 degrees of freedom | caption3 = 3 degrees of freedom | caption4 = 5 degrees of freedom | caption5 = 10 degrees of freedom | caption6 = 30 degrees of freedom }} ===Cumulative distribution function=== The [[cumulative distribution function]] (CDF) can be written in terms of {{mvar|I}}, the regularized [[incomplete beta function]]. For {{nobr|{{math| ''t'' > 0}} ,}} :<math>F(t) = \int_{-\infty}^t\ f(u)\ \operatorname{d}u ~=~ 1 - \frac{1}{2} I_{x(t)}\!\left( \frac{\ \nu\ }{ 2 },\ \frac{\ 1\ }{ 2 } \right)\ ,</math> where :<math>x(t) = \frac{ \nu }{\ t^2+\nu\ } ~.</math> Other values would be obtained by symmetry. An alternative formula, valid for <math>\ t^2 < \nu\ ,</math> is :<math>\int_{-\infty}^t f(u)\ \operatorname{d}u ~=~ \frac{1}{2} + t\ \frac{\ \Gamma\!\left( \frac{\ \nu+1\ }{ 2 } \right)\ }{\ \sqrt{\pi\ \nu\ }\ \Gamma\!\left( \frac{ \nu }{\ 2\ }\right)\ } \ {}_{2}F_1\!\left(\ \frac{1}{2}, \frac{\ \nu+1\ }{2}\ ; \frac{ 3 }{\ 2\ }\ ;\ -\frac{~ t^2\ }{ \nu }\ \right)\ ,</math> where <math>\ {}_{2}F_1(\ ,\ ;\ ;\ )\ </math> is a particular instance of the [[hypergeometric function]]. For information on its inverse cumulative distribution function, see {{slink|quantile function|Student's t-distribution}}. ===Special cases=== Certain values of <math>\ \nu\ </math> give a simple form for Student's t-distribution. {| class="wikitable" |- ! <math>\ \nu\ </math> ! PDF ! CDF ! notes |- ! 1 | <math>\ \frac{\ 1\ }{\ \pi\ (1 + t^2)\ }\ </math> | <math>\ \frac{\ 1\ }{ 2 } + \frac{\ 1\ }{ \pi }\ \arctan(\ t\ )\ </math> | See [[Cauchy distribution]] |- ! 2 | <math>\ \frac{ 1 }{\ 2\ \sqrt{2\ }\ \left(1+\frac{t^2}{2}\right)^{3/2}}\ </math> | <math>\ \frac{ 1 }{\ 2\ }+\frac{ t }{\ 2\sqrt{2\ }\ \sqrt{ 1 + \frac{~ t^2\ }{ 2 }\ }\ }\ </math> | |- ! 3 | <math>\ \frac{ 2 }{\ \pi\ \sqrt{3\ }\ \left(\ 1 + \frac{~ t^2\ }{ 3 }\ \right)^2\ }\ </math> | <math>\ \frac{\ 1\ }{ 2 } + \frac{\ 1\ }{ \pi }\ \left[ \frac{ \left(\ \frac{ t }{\ \sqrt{3\ }\ }\ \right) }{ \left(\ 1 + \frac{~ t^2\ }{ 3 }\ \right) } + \arctan\left(\ \frac{ t }{\ \sqrt{3\ }\ }\ \right)\ \right]\ </math> | |- ! 4 | <math>\ \frac{\ 3\ }{\ 8\ \left(\ 1 + \frac{~ t^2\ }{ 4 }\ \right)^{5/2}}\ </math> | <math>\ \frac{\ 1\ }{ 2 } + \frac{\ 3\ }{ 8 } \left[\ \frac{ t }{\ \sqrt{ 1 + \frac{~ t^2\ }{ 4 } ~}\ } \right] \left[\ 1 - \frac{~ t^2\ }{\ 12\ \left(\ 1 + \frac{~ t^2\ }{ 4 }\ \right)\ }\ \right]\ </math> | |- ! 5 | <math>\ \frac{ 8 }{\ 3 \pi \sqrt{5\ }\left(1+\frac{\ t^2\ }{ 5 }\right)^3\ }\ </math> | <math>\ \frac{\ 1\ }{ 2 } + \frac{\ 1\ }{\pi}{ \left[ \frac{ t }{\ \sqrt{5\ }\left(1 + \frac{\ t^2\ }{ 5 }\right)\ } \left(1 + \frac{ 2 }{\ 3 \left(1 + \frac{\ t^2\ }{ 5 }\right)\ }\right) + \arctan\left( \frac{ t }{\ \sqrt{\ 5\ }\ } \right)\right]}\ </math> | |- ! <math>\ \infty\ </math> | <math>\ \frac{ 1 }{\ \sqrt{2 \pi\ }\ }\ e^{-t^2/2}</math> | <math>\ \frac{\ 1\ }{ 2 }\ {\left[ 1 + \operatorname{erf}\left( \frac{ t }{\ \sqrt{2\ }\ } \right) \right]}\ </math> | See ''[[Normal distribution]]'', ''[[Error function]]'' |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)