Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Super-Poulet number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Super-Poulet numbers with 3 or more distinct prime divisors == It is relatively easy to get super-Poulet numbers with 3 distinct prime divisors. If you find three Poulet numbers with three common prime factors, you get a super-Poulet number, as you built the product of the three prime factors. Example: 2701 = 37 * 73 is a Poulet number, 4033 = 37 * 109 is a Poulet number, 7957 = 73 * 109 is a Poulet number; so 294409 = 37 * 73 * 109 is a Poulet number too. Super-Poulet numbers with up to 7 distinct [[prime factor]]s you can get with the following numbers: <!-- from http://www.numericana.com/answer/pseudo.htm#poulet, from Gerard Michon --> *{ 103, 307, 2143, 2857, 6529, 11119, 131071 } *{ 709, 2833, 3541, 12037, 31153, 174877, 184081 } *{ 1861, 5581, 11161, 26041, 37201, 87421, 102301 } *{ 6421, 12841, 51361, 57781, 115561, 192601, 205441 } For example, 1118863200025063181061994266818401 = 6421 * 12841 * 51361 * 57781 * 115561 * 192601 * 205441 is a super-Poulet number with 7 distinct prime factors and 120 Poulet numbers.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)