Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Supermodular function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == Let <math>(X, \preceq)</math> be a [[Lattice (order)|lattice]]. A real-valued function <math>f: X \rightarrow \mathbb{R}</math> is called '''supermodular''' if <math>f(x \vee y) + f(x \wedge y) \geq f(x) + f(y)</math> for all <math>x, y \in X</math>.<ref>{{Cite book |title=Supermodularity and complementarity |date=1998 |publisher=Princeton University Press |isbn=978-0-691-03244-3 |editor-last=Topkis |editor-first=Donald M. |series=Frontiers of economic research |location=Princeton, N.J}}</ref> If the inequality is strict, then <math>f</math> is '''strictly supermodular''' on <math>X</math>. If <math>-f</math> is (strictly) supermodular then ''f'' is called ('''strictly) submodular'''. A function that is both submodular and supermodular is called '''modular'''. This corresponds to the inequality being changed to an equality. We can also define supermodular functions where the underlying lattice is the vector space <math>\mathbb{R}^n</math>. Then the function <math>f : \mathbb{R}^n \to \mathbb{R}</math> is '''supermodular''' if <math> f(x \uparrow y) + f(x \downarrow y) \geq f(x) + f(y) </math> for all <math>x</math>, <math>y \isin \mathbb{R}^{n}</math>, where <math>x \uparrow y</math> denotes the componentwise maximum and <math>x \downarrow y</math> the componentwise minimum of <math>x</math> and <math>y</math>. If ''f'' is twice continuously differentiable, then supermodularity is equivalent to the condition<ref>The equivalence between the definition of supermodularity and its calculus formulation is sometimes called [[Topkis's theorem|Topkis' characterization theorem]]. See {{cite journal |first1=Paul |last1=Milgrom |first2=John |last2=Roberts |year=1990 |title=Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities |journal=[[Econometrica]] |volume=58 |issue=6 |pages=1255β1277 [p. 1261] |jstor=2938316 |doi=10.2307/2938316 }}</ref> :<math> \frac{\partial ^2 f}{\partial z_i\, \partial z_j} \geq 0 \mbox{ for all } i \neq j.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)