Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Surface-conduction electron-emitter display
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Description== A conventional cathode-ray tube (CRT) is powered by an [[electron gun]], essentially an open-ended [[vacuum tube]]. At one end of the gun, electrons are produced by "boiling" them off a metal filament, which requires relatively high currents and consumes a large proportion of the CRT's power. The electrons are then accelerated and focused into a fast-moving beam, flowing forward towards the screen. [[Electromagnet]]s surrounding the gun end of the tube are used to steer the beam as it travels forward, allowing the beam to be scanned across the screen to produce a 2D display. When the fast-moving electrons strike the phosphor on the back of the screen, light is produced. Color images are produced by painting the screen with spots or stripes of three colored phosphors, each for red, green, and blue (RGB). When viewed from a distance, the spots, known as "[[Subpixels|sub-pixels]]," blend together in the eye to produce a single picture element known as a [[pixel]]. The SED replaces the single gun of a conventional CRT with a grid of nanoscopic emitters, one for each sub-pixel of the display. The emitter apparatus consists of a thin slit across which electrons jump when powered with high-voltage gradients. Due to the nanoscopic size of the slits, the required field can correspond to a potential on the order of tens of volts. On the order of 3%, a few of the electrons impact with slit material on the far side and are scattered out of the emitter surface. A second field, applied externally, accelerates these scattered electrons towards the screen. Production of this field requires kilovolt potentials, but is a constant field requiring no switching, so the electronics that produce it are pretty simple. Each emitter is aligned behind a colored phosphor dot. The accelerated electrons strike the dot and cause it to give off light in a fashion identical to a conventional CRT. Since each dot on the screen is lit by a single emitter, there is no need to steer or direct the beam as there is in a CRT. The [[quantum tunneling]] effect, which emits electrons across the slits, is highly non-linear, and the emission process tends to be fully on or off for any given voltage. This allows the selection of particular emitters by powering a single horizontal row on the screen and then powering all the needed vertical columns simultaneously, thereby powering the selected emitters. The half-power received by the rest of the emitters on the row is too small to cause emission, even when combined with voltage leaking from active emitters beside them. This allows SED displays to work without an [[active matrix]] of [[thin-film transistor]]s that LCDs and similar displays require to precisely select every sub-pixel, and further reduces the complexity of the emitter array. However, this also means that changes in voltage cannot be used to control the brightness of the resulting pixels. Instead, the emitters are rapidly turned on and off using [[pulse-width modulation]], so that the total brightness of a spot at any given time can be controlled.<ref name=closer>{{cite magazine|first=Richard |last=Fink |url=http://www.eetasia.com/ARTICLES/2007AUG/PDF/EEOL_2007AUG16_OPT_TA.pdf|archive-url=https://web.archive.org/web/20110616183341/http://www.eetasia.com/ARTICLES/2007AUG/PDF/EEOL_2007AUG16_OPT_TA.pdf|archive-date=16 June 2011|title=A closer look at SED, FED technologies|magazine=EE Times-Asia|issue=August 16β31, 2007|pages=1β4|url-status=dead}}</ref> SED screens consist of two glass sheets separated by a few millimeters, the rear layer supporting the emitters and the front the phosphors. The front is easily prepared using methods similar to existing CRT systems; the phosphors are painted onto the screen using a variety of [[Screen-printing|silkscreen]] or similar technologies and then covered with a thin layer of aluminum to make the screen visibly opaque and provide an electrical return path for the electrons once they strike the screen. In the SED, this layer also serves as the front electrode that accelerates the electrons toward the screen, held at a constant high voltage relative to the switching grid. As is the case with modern CRTs, a dark mask is applied to the glass before the phosphor is painted on to give the screen a dark charcoal gray color and improve the contrast ratio. Creating the rear layer with the emitters is a multistep process. First, a matrix of silver wires is printed on the screen to form the rows or columns, an [[Insulator (electrical)|insulator]] is added, and then the columns or rows are deposited on top of that. Electrodes are added into this array, typically using [[platinum]], leaving a gap of about 60 micrometers between the columns. Next, square pads of [[palladium oxide]] (PdO) only 20 nanometers thick are deposited into the gaps between the electrodes, connecting them to supply power. A small slit is cut into the pad in the middle by repeatedly pulsing high currents through them. The resulting erosion causes a gap to form. The gap in the pad forms the emitter. The width of the gap has to be tightly controlled to work correctly, which proved challenging to control in practice. Modern SEDs add another step that greatly eases production. The pads are deposited with a much larger gap between them, as much as 50 nm, which allows them to be added directly using technology adapted from [[inkjet printer]]s. The entire screen is then placed in an organic gas, and pulses of electricity are sent through the pads. Carbon in the gas is pulled onto the edges of the slit in the PdO squares, forming thin films that extend vertically off the tops of the gaps and grow toward each other at a slight angle. This process is self-limiting; if the gap gets too small, the pulses erode the carbon, so the gap width can be controlled to produce a fairly constant 5 nm slit between them. Since the screen needs to be held in a vacuum to work, there is a large inward force on the glass surfaces due to the surrounding atmospheric pressure. Because the emitters are laid out in vertical columns, there is a space between each column where there is no phosphor, normally above the column power lines. SEDs use this space to place thin sheets or rods on top of the conductors, which keep the two glass surfaces apart. A series of these is used to reinforce the screen over its entire surface, which significantly reduces the needed strength of the glass itself.<ref name=closer/> A CRT has no place for similar reinforcements, so the glass at the front screen must be thick enough to support all the pressure. SEDs are thus much thinner and lighter than CRTs. SEDs can have a 100,000:1 contrast ratio.<ref name=nguyen>{{Cite web|url=https://www.slashgear.com/sed-next-generation-flat-screen-display-192136/|title=SED Next-Generation Flat-Screen Display|date=October 20, 2006|website=SlashGear|access-date=December 19, 2019|archive-date=December 19, 2019|archive-url=https://web.archive.org/web/20191219202338/https://www.slashgear.com/sed-next-generation-flat-screen-display-192136/|url-status=live|first=Vincent|last=Nguyen}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)