Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Symplectic group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=={{math|Sp(2''n'', '''F''')}}== The symplectic group is a [[classical group]] defined as the set of [[linear transformations]] of a {{math|2''n''}}-dimensional [[vector space]] over the field {{math|'''F'''}} which preserve a [[nondegenerate form|non-degenerate]] [[skew-symmetric matrix|skew-symmetric]] [[bilinear form]]. Such a vector space is called a [[symplectic vector space]], and the symplectic group of an abstract symplectic vector space {{math|''V''}} is denoted {{math|Sp(''V'')}}. Upon fixing a basis for {{math|''V''}}, the symplectic group becomes the group of {{math|2''n'' × 2''n''}} [[symplectic matrix|symplectic matrices]], with entries in {{math|'''F'''}}, under the operation of [[matrix multiplication]]. This group is denoted either {{math|Sp(2''n'', '''F''')}} or {{math|Sp(''n'', '''F''')}}. If the bilinear form is represented by the [[nonsingular matrix|nonsingular]] [[skew-symmetric matrix]] Ω, then :<math>\operatorname{Sp}(2n, F) = \{M \in M_{2n \times 2n}(F) : M^\mathrm{T} \Omega M = \Omega\},</math> where ''M''<sup>T</sup> is the [[transpose]] of ''M''. Often Ω is defined to be :<math>\Omega = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \\ \end{pmatrix},</math> where ''I<sub>n</sub>'' is the identity matrix. In this case, {{math|Sp(2''n'', '''F''')}} can be expressed as those block matrices <math>(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix})</math>, where <math>A, B, C, D \in M_{n \times n}(F)</math>, satisfying the three equations: :<math>\begin{align} -C^\mathrm{T}A + A^\mathrm{T}C &= 0, \\ -C^\mathrm{T}B + A^\mathrm{T}D &= I_n, \\ -D^\mathrm{T}B + B^\mathrm{T}D &= 0. \end{align}</math> Since all symplectic matrices have [[determinant]] {{math|1}}, the symplectic group is a [[subgroup]] of the [[special linear group]] {{math|SL(2''n'', '''F''')}}. When {{math|1=''n'' = 1}}, the symplectic condition on a matrix is satisfied [[if and only if]] the determinant is one, so that {{math|1=Sp(2, '''F''') = SL(2, '''F''')}}. For {{math|''n'' > 1}}, there are additional conditions, i.e. {{math|Sp(2''n'', '''F''')}} is then a proper subgroup of {{math|SL(2''n'', '''F''')}}. Typically, the field {{math|'''F'''}} is the field of [[real number]]s {{math|'''R'''}} or [[complex number]]s {{math|'''C'''}}. In these cases {{math|Sp(2''n'', '''F''')}} is a real or complex [[Lie group]] of real or complex dimension {{math|''n''(2''n'' + 1)}}, respectively. These groups are [[connected space|connected]] but [[Compact group|non-compact]]. The [[Center (group theory)|center]] of {{math|Sp(2''n'', '''F''')}} consists of the matrices {{math|''I''<sub>2''n''</sub>}} and {{math|−''I''<sub>2''n''</sub>}} as long as the [[Characteristic (algebra)|characteristic of the field]] is not {{math|2}}.<ref>[http://www.encyclopediaofmath.org/index.php/Symplectic_group "Symplectic group"], ''[[Encyclopedia of Mathematics]]'' Retrieved on 13 December 2014.</ref> Since the center of {{math|Sp(2''n'', '''F''')}} is discrete and its quotient modulo the center is a [[simple group]], {{math|Sp(2''n'', '''F''')}} is considered a [[Simple Lie group#Comments on the definition|simple Lie group]]. The real rank of the corresponding Lie algebra, and hence of the Lie group {{math|Sp(2''n'', '''F''')}}, is {{math|''n''}}. The [[Lie algebra]] of {{math|Sp(2''n'', '''F''')}} is the set :<math>\mathfrak{sp}(2n,F) = \{X \in M_{2n \times 2n}(F) : \Omega X + X^\mathrm{T} \Omega = 0\},</math> equipped with the [[Commutator#Ring theory|commutator]] as its Lie bracket.<ref>{{harvnb|Hall|2015}} Prop. 3.25</ref> For the standard skew-symmetric bilinear form <math>\Omega = (\begin{smallmatrix} 0 & I \\ -I & 0 \end{smallmatrix})</math>, this Lie algebra is the set of all block matrices <math>(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix})</math> subject to the conditions :<math>\begin{align} A &= -D^\mathrm{T}, \\ B &= B^\mathrm{T}, \\ C &= C^\mathrm{T}. \end{align}</math> ==={{math|Sp(2''n'', '''C''')}}=== The symplectic group over the field of complex numbers is a [[Compact group|non-compact]], [[simply connected]], [[simple Lie group]]. The definition of this group includes '''no''' conjugates (contrary to what one might naively expect) but instead it is exactly the same as the definition bar the field change.{{sfn|Hall|2015|p=10}} ==={{math|Sp(2''n'', '''R''')}}=== {{math|Sp(''n'', '''C''')}} is the [[Complexification (Lie group)|complexification]] of the real group {{math|Sp(2''n'', '''R''')}}. {{math|Sp(2''n'', '''R''')}} is a real, [[Compact group|non-compact]], [[Connected space|connected]], [[simple Lie group]].<ref>[https://math.stackexchange.com/q/1051400 "Is the symplectic group Sp(2''n'', '''R''') simple?"], ''[[Stack Exchange]]'' Retrieved on 14 December 2014.</ref> It has a [[fundamental group]] [[Group isomorphism|isomorphic]] to the group of [[integers]] under addition. As the [[real form]] of a [[simple Lie group]] its Lie algebra is a [[Split Lie algebra|splittable Lie algebra]]. Some further properties of {{math|Sp(2''n'', '''R''')}}: * The [[exponential map (Lie theory)|exponential map]] from the [[Lie algebra]] {{math|'''sp'''(2''n'', '''R''')}} to the group {{math|Sp(2''n'', '''R''')}} is not [[Surjective function|surjective]]. However, any element of the group can be represented as the product of two exponentials.<ref>[https://math.stackexchange.com/q/1051255 "Is the exponential map for Sp(2''n'', '''R''') surjective?"], ''[[Stack Exchange]]'' Retrieved on 5 December 2014.</ref> In other words, ::<math>\forall S \in \operatorname{Sp}(2n,\mathbf{R})\,\, \exists X,Y \in \mathfrak{sp}(2n,\mathbf{R}) \,\, S = e^Xe^Y. </math> * For all {{math|''S''}} in {{math|Sp(2''n'', '''R''')}}: ::<math>S = OZO' \quad \text{such that} \quad O, O' \in \operatorname{Sp}(2n,\mathbf{R})\cap\operatorname{SO}(2n) \cong U(n) \quad \text{and} \quad Z = \begin{pmatrix}D & 0 \\ 0 & D^{-1}\end{pmatrix}.</math> :The matrix {{math|''D''}} is [[Positive-definite matrix|positive-definite]] and [[Diagonal matrix|diagonal]]. The set of such {{math|''Z''}}s forms a non-compact subgroup of {{math|Sp(2''n'', '''R''')}} whereas {{math|U(''n'')}} forms a compact subgroup. This decomposition is known as 'Euler' or 'Bloch–Messiah' decomposition.<ref>[https://www.maths.nottingham.ac.uk/personal/ga/papers/2602.pdf "Standard forms and entanglement engineering of multimode Gaussian states under local operations – Serafini and Adesso"], Retrieved on 30 January 2015.</ref> Further [[symplectic matrix]] properties can be found on that Wikipedia page. * As a [[Lie group]], {{math|Sp(2''n'', '''R''')}} has a manifold structure. The [[manifold]] for {{math|Sp(2''n'', '''R''')}} is [[Diffeomorphism|diffeomorphic]] to the [[Manifold#Cartesian products|Cartesian product]] of the [[unitary group]] {{math|U(''n'')}} with a [[vector space]] of dimension {{math|''n''(''n''+1)}}.<ref>[http://www.maths.ed.ac.uk/~aar/papers/arnogive.pdf "Symplectic Geometry – Arnol'd and Givental"], Retrieved on 30 January 2015.</ref> ===Infinitesimal generators=== The members of the symplectic Lie algebra {{math|'''sp'''(2''n'', '''F''')}} are the [[Hamiltonian matrix|Hamiltonian matrices]]. These are matrices, <math>Q</math> such that<blockquote><math>Q = \begin{pmatrix} A & B \\ C & -A^\mathrm{T} \end{pmatrix}</math></blockquote>where {{math|''B''}} and {{math|''C''}} are [[Symmetric matrix|symmetric matrices]]. See [[classical group]] for a derivation. ===Example of symplectic matrices=== For {{math|Sp(2, '''R''')}}, the group of {{math|2 × 2}} matrices with determinant {{math|1}}, the three symplectic {{math|(0, 1)}}-matrices are:<ref>[http://mathworld.wolfram.com/SymplecticGroup.html Symplectic Group], (source: [[Wolfram MathWorld]]), downloaded February 14, 2012</ref><blockquote><math>\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},\quad \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\quad \text{and} \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. </math></blockquote> ==== Sp(2n, R) ==== It turns out that <math>\operatorname{Sp}(2n,\mathbf{R})</math> can have a fairly explicit description using generators. If we let <math>\operatorname{Sym}(n)</math> denote the symmetric <math>n\times n</math> matrices, then <math>\operatorname{Sp}(2n,\mathbf{R})</math> is generated by <math>D(n)\cup N(n) \cup \{\Omega\},</math> where<blockquote><math>\begin{align} D(n) &= \left\{ \left. \begin{bmatrix} A & 0 \\ 0 & (A^T)^{-1} \end{bmatrix} \,\right| \, A \in \operatorname{GL}(n, \mathbf{R}) \right\} \\[6pt] N(n) &= \left\{ \left. \begin{bmatrix} I_n & B \\ 0 & I_n \end{bmatrix} \, \right| \, B \in \operatorname{Sym}(n)\right\} \end{align}</math></blockquote>are subgroups of <math>\operatorname{Sp}(2n,\mathbf{R})</math><ref>{{Cite book|last=Gerald B. Folland.|url=https://www.worldcat.org/oclc/945482850|title=Harmonic analysis in phase space|date=2016|publisher=Princeton Univ Press|isbn=978-1-4008-8242-7|location=Princeton|page=173|oclc=945482850}}</ref><sup>pg 173</sup><ref>{{Cite book|last=Habermann, Katharina, 1966-|url=http://worldcat.org/oclc/262692314|title=Introduction to symplectic Dirac operators|date=2006|publisher=Springer|isbn=978-3-540-33421-7|oclc=262692314}}</ref><sup>pg 2</sup>. ===Relationship with symplectic geometry=== [[Symplectic geometry]] is the study of [[symplectic manifold]]s. The [[tangent space]] at any point on a symplectic manifold is a [[symplectic vector space]].<ref>[https://empg.maths.ed.ac.uk/Activities/BRST/ "Lecture Notes – Lecture 2: Symplectic reduction"], Retrieved on 30 January 2015.</ref> As noted earlier, structure preserving transformations of a symplectic vector space form a [[Group (mathematics)|group]] and this group is {{math|Sp(2''n'', '''F''')}}, depending on the dimension of the space and the [[Field (mathematics)|field]] over which it is defined. A symplectic vector space is itself a symplectic manifold. A transformation under an [[Group action (mathematics)|action]] of the symplectic group is thus, in a sense, a linearised version of a [[symplectomorphism]] which is a more general structure preserving transformation on a symplectic manifold.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)