Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tensor field
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == Let <math>M</math> be a [[manifold]], for instance the [[Euclidean space]] <math>\R^n</math>. {{blockquote|'''Definition.''' A '''tensor field''' of type <math>(p,q)</math> is a section <math display="block"> T\ \in\ \Gamma(M, V^{\otimes p}\otimes (V^*)^{\otimes q}) </math> where <math>V=TM</math> to be the [[tangent bundle]] of <math>M</math> (whose sections are called vector fields or contra variant vector fields in Physics) and <math>V^* = T^*M</math> is its dual bundle, the cotangent space (whose sections are called 1 forms, or covariant vector fields in Physics), and <math>\otimes</math> is the [[Tensor product bundle|tensor product]] of vector bundles.}} Equivalently, a tensor field is a collection of elements <math>T_x\in V_x^{\otimes p}\otimes (V_x^*)^{\otimes q}</math> for every point <math>x\in M</math>, where <math>\otimes</math> now denotes the tensor product of vectors spaces, such that it constitutes a smooth map <math>T:M\rightarrow V^{\otimes p}\otimes (V^*)^{\otimes q}</math>. The elements <math>T_x</math> are called [[tensor]]s. Locally in a coordinate neighbourhood <math>U</math> with coordinates <math>x^1, \ldots x^n</math> we have a local basis (Vielbein) of vector fields <math>\partial_1 = \frac{\partial}{\partial x^n} \ldots \partial_n = \frac{\partial}{\partial x_n}</math>, and a dual basis of 1 forms <math>dx^1, \ldots dx^n</math> so that <math>dx^i(\partial_j) = \partial_j x^i = \delta^i_j</math>. In the coordinate neighbourhood <math>U</math> we then have <math display = "block"> T_x = T^{i_1, \ldots i_p}_{j_1, \ldots, j_q}(x^1, \ldots, x^n) \partial_{i_1} \otimes \cdots \otimes \partial_{i_p}\otimes dx^{j_1} \otimes \cdots \otimes dx^{j_q} </math> where here and below we use Einstein summation conventions. Note that if we choose different coordinate system <math>y^1 \ldots y^n</math> then <math>\frac\partial{\partial x^i} = \frac{\partial y^k}{\partial x^i}\frac\partial{\partial y^k}</math> and <math>dx^j = \frac{\partial x^j}{\partial y^\ell}dy^\ell</math> where the coordinates <math>(x^1, \ldots, x^n)</math> can be expressed in the coordinates <math>(y^1,\ldots y^n</math> and vice versa, so that <math display = "block"> \begin{align} T_x &= T^{i_1, \ldots i_p}_{j_1, \ldots, j_q}(x^1, \ldots, x^n) \frac{\partial}{\partial x^{i_1}}\otimes \cdots \otimes \frac{\partial}{\partial x^{i_p}}\otimes dx^{j_1} \otimes \cdots \otimes dx^{j_q} \\ &= T^{i_1, \ldots i_p}_{j_1, \ldots, j_q}(x^1, \ldots, x^n) \frac{\partial y^{k_1}}{\partial x^{i_1}}\cdots\frac{\partial y^{k_p}}{\partial x^{i_p}}\frac{\partial x^{j_1}}{\partial y^{\ell_1}}\cdots\frac{\partial x^{j_q}}{\partial y^{\ell_q}} \frac{\partial}{\partial y^{k_1}}\otimes \cdots \otimes \frac{\partial}{\partial y^{k_p}}\otimes dy^{\ell_1} \otimes \cdots \otimes dy^{\ell_q}\\ &=T^{k_1, \ldots, k_p}_{\ell_1,\cdots \ell_q}(y^1, \ldots y^n) \frac{\partial}{\partial y^{k_1}}\otimes \cdots \otimes\frac{\partial}{\partial y^{k_p}}\otimes dy^{\ell_1} \otimes \cdots \otimes dy^{\ell_q}\\ \end{align} </math> i.e. <math display = "block"> T^{k_1, \ldots, k_p}_{\ell_1,\cdots \ell_q}(y^1, \ldots y^n) = T^{i_1, \ldots i_p}_{j_1, \ldots, j_q}(x^1, \ldots, x^n) \frac{\partial y^{k_1}}{\partial x^{i_1}}\cdots\frac{\partial y^{k_p}}{\partial x^{i_p}}\frac{\partial x^{j_1}}{\partial y^{\ell_1}}\cdots\frac{\partial x^{j_q}}{\partial y^{\ell_q}} </math> The system of indexed functions <math>T^{i_1, \ldots i_p}_{j_1, \ldots, j_q}(x^1, \ldots, x^n)</math> (one system for each choice of coordinate system) connected by transformations as above are the tensors in the definitions below. '''Remark''' One can, more generally, take <math>V</math> to be any [[vector bundle]] on <math>M</math>, and <math>V^*</math> its [[dual bundle]]. In that case can be a more general topological space. These sections are called tensors of <math>V</math> or tensors for short if no confusion is possible .
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)