Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Terbium
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Characteristics == === Physical properties === Terbium is a silvery-white [[rare earth element|rare earth]] [[metal]] that is [[malleable]], [[ductile]] and soft enough to be cut with a knife.<ref name="CRC" /> It is relatively stable in air compared to the more reactive lanthanides in the first half of the lanthanide series.<ref>{{cite web| url = http://www.elementsales.com/re_exp/index.htm |title = Rare-Earth Metal Long Term Air Exposure Test| access-date = 2009-05-05}}</ref> Terbium exists in two crystal [[allotropy|allotropes]] with a transformation temperature of 1289 °C between them.<ref name="CRC" /> The 65 electrons of a terbium atom are arranged in the [[electron configuration]] [Xe]4f<sup>9</sup>6s<sup>2</sup>. The eleven 4f and 6s electrons are [[valence electron|valence]]. Only three electrons can be removed before the nuclear charge becomes too great to allow further ionization, but in the case of terbium, the stability of the half-filled [Xe]4f<sup>7</sup> configuration allows further ionization of a fourth electron in the presence of very strong oxidizing agents such as [[fluorine]] gas.<ref name="CRC" /> The terbium(III) cation (Tb<sup>3+</sup>) is brilliantly [[Fluorescence|fluorescent]], in a bright lemon-yellow color that is the result of a strong green [[emission line]] in combination with other lines in the orange and red. The yttrofluorite variety of the mineral [[fluorite]] owes its creamy-yellow fluorescence in part to terbium. Terbium easily oxidizes, and is therefore used in its elemental form specifically for research. Single terbium atoms have been isolated by implanting them into [[fullerene]] molecules. Trivalent [[europium]] (Eu<sup>3+</sup>) and Tb<sup>3+</sup> ions are among the lanthanide ions that have garnered the most attention because of their strong luminosity and great color purity.<ref>V.B. Taxak, R. Kumar, J.K. Makrandi, S.P. Khatkar Displays, 30 (2009), pp. 170–174</ref><ref>{{cite journal|last1=Shimada|first1=T.|last2=Ohno|first2=Y.|last3=Okazaki|first3=T.|last4=Sugai|first4=T.|last5=Suenaga|first5=K.|last6=Kishimoto|first6=S.|last7=Mizutani|first7=T.|last8=Inoue|first8=T.|last9=Taniguchi|first9=R.|last10=Fukui|display-authors=3 | first10=N.|last11=Okubo | first11=H.|last12=Shinohara | first12=H.|title=Transport properties of C<sub>78</sub>, C<sub>90</sub> and Dy@C<sub>82</sub> fullerenes – nanopeapods by field effect transistors|journal=Physica E: Low-dimensional Systems and Nanostructures|year=2004|volume=21|issue=2–4|pages=1089–1092|doi=10.1016/j.physe.2003.11.197|bibcode = 2004PhyE...21.1089S}}</ref> Terbium has a simple [[ferromagnetic]] ordering at temperatures below 219 K. Above 219 K, it turns into a [[Helimagnetism|helical antiferromagnetic]] state in which all of the atomic moments in a particular [[basal plane]] layer are parallel and oriented at a fixed angle to the moments of adjacent layers. This antiferromagnetism transforms into a disordered [[paramagnetic]] state at 230 K.<ref>{{cite journal| author =Jackson, M. | title =Magnetism of Rare Earth| url =http://www.irm.umn.edu/quarterly/irmq10-3.pdf | journal = The IRM Quarterly | volume =10| issue = 3| page = 1| date = 2000}}</ref> === Chemical properties === Terbium metal is an electropositive element and oxidizes in the presence of most acids (such as sulfuric acid), all of the halogens, and water.<ref name="reactions" /> :{{chem2|2 Tb (s) + 3 H2SO4 → 2 Tb(3+) + 3 SO4(2-) + 3 H2↑}} :{{chem2|1=2 Tb + 3 X2 → 2 TbX3 (X = [[fluorine|F]], [[chlorine|Cl]], [[bromine|Br]], [[iodine|I]])}} :{{chem2|2 Tb (s) + 6 H2O → 2 Tb(OH)3 + 3 H2↑}} Terbium oxidizes readily in air to form a mixed [[terbium(III,IV) oxide]]:<ref name="reactions">{{cite web| url =https://www.webelements.com/terbium/chemistry.html| title =Chemical reactions of Terbium| publisher=Webelements| access-date=2009-06-06}}</ref> :{{chem2|8 Tb + 7 O2 → 2 Tb4O7}} The most common oxidation state of terbium is +3 (trivalent), such as in [[Terbium trichloride|{{chem|Tb||Cl|3}}]]. In the solid state, tetravalent terbium is also known, in compounds such as terbium oxide ({{chem2|TbO2}}) and terbium tetrafluoride.<ref>{{cite journal|title=Higher Oxides of the Lanthanide Elements: Terbium Dioxide|author=Gruen, D. M. |author2=Koehler, W. C. |author3=Katz, J. J. |date=April 1951|pages=1475–1479|volume=73|journal=Journal of the American Chemical Society|doi=10.1021/ja01148a020|issue=4|bibcode=1951JAChS..73.1475G }}</ref> In solution, terbium typically forms trivalent species, but can be oxidized to the tetravalent state with [[ozone]] in highly basic aqueous conditions.<ref>{{cite journal |title=Stabilization of Praseodymium(IV) and Terbium(IV) in Aqueous Carbonate Solution |author1=Hobart, D. E. |author2= Samhoun, K. |author3= Young, J. P. |author4=Norvell, V. E. |author5= Mamantov, G. |author6= Peterson, J. R. |date=1980 |pages=321–328 |volume=16 |journal=Inorganic and Nuclear Chemistry Letters |doi=10.1016/0020-1650(80)80069-9 |issue=5}}</ref> The coordination and organometallic chemistry of terbium is similar to other lanthanides. In aqueous conditions, terbium can be coordinated by nine [[water]] molecules, which are arranged in a [[tricapped trigonal prismatic molecular geometry]].<ref>{{Cite journal |last1=Zhuang |first1=Jia-Jia |last2=Chen |first2=Ming-Guang |last3=Sun |first3=Yan-Bing |last4=Hang |first4=Pei |last5=Sui |first5=Yang |last6=Tong |first6=Jia-Ping |date=2020-03-01 |title=Synthesis, Structure and Magnetic Property of a Tricapped Trigonal Prismatic Tb<sup>III</sup>-Based 3d-4f Complex |journal=IOP Conference Series: Materials Science and Engineering |volume=774 |issue=1 |pages=012042 |doi=10.1088/1757-899X/774/1/012042 |issn=1757-8981|doi-access=free |bibcode=2020MS&E..774a2042Z }}</ref> Complexes of terbium with lower coordination number are also known, typically with bulky ligands like [[Metal bis(trimethylsilyl)amides|bis(trimethylsilyl)amide]], which forms the three-coordinate tris[N,N-bis(trimethylsilyl)amide]terbium(III) ({{chem2|Tb[N(SiMe3)2]3}}) complex.<ref>{{Cite journal |last1=Boyde |first1=Nicholas C. |last2=Chmely |first2=Stephen C. |last3=Hanusa |first3=Timothy P. |last4=Rheingold |first4=Arnold L. |last5=Brennessel |first5=William W. |date=2014-09-15 |title=Structural Distortions in M[E(SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub> Complexes (M = Group 15, f-Element; E = N, CH): Is Three a Crowd? |url=https://pubs.acs.org/doi/10.1021/ic501232z |journal=Inorganic Chemistry |language=en |volume=53 |issue=18 |pages=9703–9714 |doi=10.1021/ic501232z |pmid=25171144 |issn=0020-1669}}</ref> Most coordination and organometallic complexes contain terbium in the trivalent oxidation state. Divalent Tb<sup>2+</sup> complexes are also known, usually with bulky [[Cyclopentadienyl complex|cyclopentadienyl-type ligands]].<ref>{{cite journal |title=Tetramethylcyclopentadienyl Ligands Allow Isolation of Ln(II) Ions across the Lanthanide Series in [K(2.2.2-cryptand)][(C<sub>5</sub>Me<sub>4</sub>H)<sub>3</sub>Ln] Complexes |author1=Jenkins, T. F. |author2= Woen, D. H |author3= Mohanam, L. N. |author4=Ziller, J. W. |author5=Furche, F. |author6=Evans, W. J. |date=2018|pages=3863–3873|volume=141 |journal=Organometallics |doi=10.1021/acs.organomet.8b00557 |issue=21|s2cid=105379627 }}</ref><ref>{{cite journal |title=Completing the Series of +2 Ions for the Lanthanide Elements: Synthesis of Molecular Complexes of Pr<sup>2+</sup>, Gd<sup>2+</sup>, Tb<sup>2+</sup>, and Lu<sup>2+</sup> |author1=Macdonald, M. R. |author2= Bates, J. E. |author3= Ziller, J. W. |author4=Furche, F. |author5=Evans, W. J. |date=2013|pages=9857–9868|volume=135|journal=Journal of the American Chemical Society|doi=10.1021/ja403753j|issue=21|pmid=23697603 |bibcode=2013JAChS.135.9857M }}</ref><ref>{{Cite journal|last1=Gould|first1=C. A.|last2=McClain|first2=K. R. |last3=Yu|first3=J. M.|last4=Groshens|first4=T. J.|last5=Furche|first5=F. P.|last6=Harvey|first6=B. G.|last7=Long|first7=J. R.|date=2019-08-21|title=Synthesis and Magnetism of Neutral, Linear Metallocene Complexes of Terbium(II) and Dysprosium(II)|journal=Journal of the American Chemical Society|volume=141|issue=33|pages=12967–12973|doi=10.1021/jacs.9b05816|pmid=31375028|bibcode=2019JAChS.14112967G |s2cid=199388151|issn=0002-7863}}</ref> A few coordination compounds containing terbium in its tetravalent state are also known.<ref>{{cite journal |title=Molecular Complex of Tb in the +4 Oxidation State |author1=Palumbo, C. T. |author2=Zivkovic, I. |author3=Scopelliti, R. |author4=Mazzanti, M. |date=2019 |pages=9827–9831 |volume=141 |journal=Journal of the American Chemical Society |doi=10.1021/jacs.9b05337 |pmid=31194529 |issue=25 |bibcode=2019JAChS.141.9827P |s2cid=189814301 |url=http://infoscience.epfl.ch/record/268286/files/Palumbo%20ja-2019-05337d%20manuscriptR1.pdf |archive-url=https://web.archive.org/web/20240423040613/https://infoscience.epfl.ch/record/268286/files/Palumbo%20ja-2019-05337d%20manuscriptR1.pdf |url-status=dead |archive-date=April 23, 2024 }}</ref><ref>{{Cite journal|last1=Rice|first1=N. T.|last2=Popov|first2=I. A.|last3=Russo|first3=D. R.|last4=Bacsa|first4=J.|last5=Batista|first5=E. R.|last6=Yang|first6=P.|last7=Telser|first7=J.|last8=La Pierre|first8=H. S.|date=2019-08-21|title=Design, Isolation, and Spectroscopic Analysis of a Tetravalent Terbium Complex|journal=Journal of the American Chemical Society|volume=141|issue=33|pages=13222–13233|doi=10.1021/jacs.9b06622|pmid=31352780|bibcode=2019JAChS.14113222R |osti=1558225|s2cid=207197096|issn=0002-7863|url=https://figshare.com/articles/journal_contribution/9450461 }}</ref><ref>{{cite journal |title= Stabilization of the Oxidation State +IV in Siloxide-Supported Terbium Compounds |author1=Willauer, A. R. |author2=Palumbo, C. T. |author3=Scopelliti, R. |author4=Zivkovic, I. |author5=Douair, I. |author6=Maron, L. |author7=Mazzanti, M. |date=2020 |pages=3549–3553|volume=59 |journal=Angewandte Chemie International Edition |issue=9 |doi=10.1002/anie.201914733|pmid=31840371 |s2cid=209385870 |url=https://infoscience.epfl.ch/record/275738/files/Mazzanti_et_al-2019-Angewandte_Chemie_International_Edition-2.pdf }}</ref> ==== Oxidation states ==== Like most [[rare-earth elements]] and [[lanthanides]], terbium is usually found in the +3 oxidation state. Like [[cerium]] and [[praseodymium]], terbium can also form a +4 oxidation state,<ref name=":1">{{Cite journal |last1=Palumbo |first1=Chad T. |last2=Zivkovic |first2=Ivica |last3=Scopelliti |first3=Rosario |last4=Mazzanti |first4=Marinella |date=2019-06-26 |title=Molecular Complex of Tb in the +4 Oxidation State |url=https://pubs.acs.org/doi/10.1021/jacs.9b05337 |journal=Journal of the American Chemical Society |language=en |volume=141 |issue=25 |pages=9827–9831 |doi=10.1021/jacs.9b05337 |pmid=31194529 |bibcode=2019JAChS.141.9827P |issn=0002-7863}}</ref> although it is unstable in water.<ref>{{Greenwood&Earnshaw2nd}}</ref> It is possible for terbium to be found in the 0,<ref name="Cloke">{{cite journal |last=Cloke |first=F. Geoffrey N. |date=1993 |title=Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides |journal=Chem. Soc. Rev. |volume=22 |pages=17–24 |doi=10.1039/CS9932200017}}</ref><ref name="Arnold">{{cite journal |last1=Arnold |first1=Polly L. |last2=Petrukhina |first2=Marina A. |last3=Bochenkov |first3=Vladimir E. |last4=Shabatina |first4=Tatyana I. |last5=Zagorskii |first5=Vyacheslav V. |last6=Cloke |first9=F. Geoffrey N. |date=2003-12-15 |title=Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation |journal=Journal of Organometallic Chemistry |volume=688 |issue=1–2 |pages=49–55 |doi=10.1016/j.jorganchem.2003.08.028}}</ref> +1,<ref name="Wan-Lu Li">{{cite journal |last1=Li |first1=Wan-Lu |last2=Chen |first2=Teng-Teng |last3=Chen |first3=Wei-Jia |last4=Li |first4=Jun |last5=Wang |first5=Lai-Sheng |year=2021 |title=Monovalent lanthanide(I) in borozene complexes |journal=Nature Communications |volume=12 |issue=1 |page=6467 |bibcode=2021NatCo..12.6467L |doi=10.1038/s41467-021-26785-9 |pmc=8578558 |pmid=34753931}}</ref> and +2<ref name=":1" /> oxidation states. === Compounds === {{Main article|Terbium compounds}} {{multiple image | direction = vertical | width = 200 |align=right |image1=Tb-sulfate.jpg |image2=Tb-sulfate-luminescence.jpg |caption2=Terbium sulfate, {{chem2|Tb2(SO4)3}} (top), fluoresces green under ultraviolet light (bottom)}} Terbium combines with nitrogen, carbon, sulfur, phosphorus, boron, selenium, silicon and arsenic at elevated temperatures, forming various binary compounds such as {{chem2|TbH2}}, {{chem2|TbH3}}, {{chem2|TbB2}}, {{chem2|Tb2S3}}, {{chem2|TbSe}}, {{chem2|TbTe}} and {{chem2|[[terbium(III) nitride|TbN]]}}.<ref name="patnaik" /> In these compounds, terbium mainly exhibits the oxidation state +3, with the +2 state appearing rarely. Terbium(II) halides are obtained by [[annealing (materials science)|annealing]] terbium(III) halides in presence of metallic terbium in [[tantalum]] containers. Terbium also forms the sesquichloride {{chem2|Tb2Cl3}}, which can be further reduced to terbium(I) chloride ({{Chem2|TbCl}}) by annealing at 800 °C; this compound forms platelets with layered graphite-like structure.<ref>{{cite book| page=1128| url=https://books.google.com/books?id=U3MWRONWAmMC&pg=PA1128| title =Advanced inorganic chemistry| edition =6th| author= Cotton| publisher= Wiley-India| date = 2007| isbn =978-81-265-1338-3}}</ref> [[Terbium(IV) fluoride]] ({{Chem2|TbF4}}) is the only halide that tetravalent terbium can form. It has strong oxidizing properties and is a strong [[halogenation|fluorinating agent]], emitting relatively pure atomic [[fluorine]] when heated, rather than the mixture of fluoride vapors emitted from [[cobalt(III) fluoride]] or [[cerium(IV) fluoride]].<ref>{{cite journal |last1=Rau |first1=J. V. |last2=Chilingarov |first2=N. S. |last3=Leskiv |first3=M. S. |last4=Sukhoverkhov |first4=V. F. |last5=Rossi Albertini |first5=V. |last6=Sidorov |first6=L. N. |title=Transition and rare earth metal fluorides as thermal sources of atomic and molecular fluorine |journal=Le Journal de Physique IV |date=August 2001 |volume=11 |issue=PR3 |pages=Pr3–109–Pr3-113 |doi=10.1051/jp4:2001314}}</ref> It can be obtained by reacting [[terbium(III) chloride]] or [[terbium(III) fluoride]] with [[fluorine]] gas at 320 °C:<ref>{{Cite book|author=G. Meyer |author2=Lester R. Morss |title= Synthesis of Lanthanide and Actinide Compounds |publisher=Springer Science & Business Media|year= 1991|page=60|isbn= 978-0-7923-1018-1 |url = https://books.google.com/books?id=bnS5elHL2w8C&pg=PA60}}</ref> : 2 TbF<sub>3</sub> + F<sub>2</sub> → 2 TbF<sub>4</sub> When {{Chem2|TbF4}} and [[caesium fluoride]] (CsF) is mixed in a stoichiometric ratio in a fluorine gas atmosphere, caesium pentafluoroterbate ({{Chem2|CsTbF5}}) is obtained. It is an [[orthorhombic crystal system|orthorhombic]] crystal with [[space group]] ''Cmca'' and a layered structure composed of [TbF<sub>8</sub>]<sup>4−</sup> and 11-coordinated Cs<sup>+</sup>.<ref>{{cite journal|last1=Gaumet|first1=V.|last2=Avignant|first2=D.|title=Caesium Pentafluoroterbate, CsTbF<sub>5</sub>|journal=Acta Crystallographica Section C: Crystal Structure Communications|volume=53|issue=9|year=1997|pages=1176–1178 |doi=10.1107/S0108270197005556|bibcode=1997AcCrC..53.1176G }}</ref> The compound barium hexafluoroterbate ({{Chem2|BaTbF6}}), an orthorhombic crystal with space group ''Cmma'', can be prepared in a similar method. The terbium fluoride ion [TbF<sub>8</sub>]<sup>4−</sup><ref>{{cite journal|last1=Largeau|first1=E.|last2=El-Ghozzi|first2=M.|last3=Métin|first3=J.|last4=Avignant|first4=D.|title=β-BaTbF6|journal=Acta Crystallographica Section C: Crystal Structure Communications|volume=53|issue=5|year=1997|pages=530–532 |doi=10.1107/S0108270196014527|bibcode=1997AcCrC..53..530L }}</ref> also exists in the structure of potassium terbium fluoride crystals.<ref>{{Cite journal |last1=Balodhi |first1=Ashiwini |last2=Chang |first2=Kelvin |last3=Stevens |first3=Kevin T. |last4=Chakrapani |first4=Sunil K. |last5=Ennaceur |first5=Susan M. |last6=Migliori |first6=Albert |last7=Zevalkink |first7=Alexandra |date=2020-10-26 |title=Determination of single crystal elastic moduli of KTb<sub>3</sub>F<sub>10</sub> by resonant ultrasound spectroscopy |url=https://pubs.aip.org/aip/jap/article/128/16/165104/568450/Determination-of-single-crystal-elastic-moduli-of |journal=Journal of Applied Physics |volume=128 |issue=16 |doi=10.1063/5.0024723 |bibcode=2020JAP...128p5104B |issn=0021-8979}}</ref><ref>{{Cite journal |last1=Valiev |first1=Uygun V. |last2=Karimov |first2=Denis N. |last3=Ma |first3=Chong-Geng |last4=Sultonov |first4=Odiljon Z. |last5=Pelenovich |first5=Vasiliy O. |date=2022-11-12 |title=Tb<sup>3+</sup> Ion Optical and Magneto-Optical Properties in the Cubic Crystals KTb<sub>3</sub>F<sub>10</sub> |journal=Materials |language=en |volume=15 |issue=22 |pages=7999 |doi=10.3390/ma15227999 |issn=1996-1944 |pmc=9693278 |pmid=36431487 |doi-access=free|bibcode=2022Mate...15.7999V }}</ref> [[Terbium(III) oxide]] or terbia is the main oxide of terbium, and appears as a dark brown water-insoluble solid. It is slightly hygroscopic<ref name=":02">{{Cite book |last1=Larrañaga |first1=Michael D. |url=https://onlinelibrary.wiley.com/doi/book/10.1002/9781119312468 |title=Hawley's Condensed Chemical Dictionary |last2=Lewis |first2=Richard J. |last3=Lewis |first3=Robert A. |date=September 2016 |publisher=Wiley |isbn=978-1-118-13515-0 |edition=16th |pages=1310 |language=en |doi=10.1002/9781119312468}}</ref> and is the main terbium compound found in rare earth-containing minerals and clays.<ref name=":2" /> Other compounds include: * [[Chloride]]s: {{chem2|[[terbium(III) chloride|TbCl3]]}} * [[Bromide]]s: {{chem2|[[terbium(III) bromide|TbBr3]]}} * [[Iodide]]s: {{chem2|[[terbium(III) iodide|TbI3]]}} * [[Fluoride]]s: {{chem2|[[terbium(III) fluoride|TbF3]]}}, {{chem2|[[terbium(IV) fluoride|TbF4]]}} === Isotopes === {{Main|Isotopes of terbium}} Naturally occurring terbium is composed of its only stable [[isotope]], terbium-159; the element is thus [[mononuclidic element|mononuclidic]] and [[monoisotopic element|monoisotopic]].<ref name="CIAAWterbium"/> Thirty-nine [[radioisotope]]s have been characterized,{{AME2020 II|ref}} with the heaviest being terbium-174 and lightest being terbium-135 (both with unknown exact mass).{{NUBASE2020|ref}} The most stable [[synthetic radioisotope]]s of terbium are terbium-158, with a [[half-life]] of 180 years, and terbium-157, with a half-life of 71 years. All of the remaining [[radioactive]] isotopes have half-lives that are less than three months, and the majority of these have half-lives that are less than half a minute.{{NUBASE2020|ref}} The primary [[decay mode]] before the most abundant stable isotope, {{sup|159}}Tb, is [[electron capture]], which results in production of [[gadolinium]] isotopes, and the primary mode after is [[beta minus decay]], resulting in [[dysprosium]] isotopes.{{NUBASE2020|ref}} The element also has 31 [[nuclear isomer]]s, with masses of 141–154, 156, 158, 162, and 164–168 (not every mass number corresponds to only one isomer).{{AME2020 II|ref}} The most stable of them are terbium-156m, with a half-life of 24.4 hours, and terbium-156m2, with a half-life of 22.7 hours; this is longer than half-lives of most ground states of radioactive terbium isotopes, except those with mass numbers 155–161.{{NUBASE2020|ref}} Terbium-149, with a half-life of 4.1 hours, is a promising candidate in [[targeted alpha therapy]] and [[positron emission tomography]].<ref>{{cite journal | last1=Müller | first1=Cristina | last2=Vermeulen | first2=Christiaan | last3=Köster | first3=Ulli | last4=Johnston | first4=Karl | last5=Türler | first5=Andreas | last6=Schibli | first6=Roger | last7=van der Meulen | first7=Nicholas P. | title=Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics | journal=EJNMMI Radiopharmacy and Chemistry | publisher=Springer Science and Business Media LLC | volume=1 | issue=1 | date=2016-03-28 | page=5 | issn=2365-421X | doi=10.1186/s41181-016-0008-2| pmid=29564382 | pmc=5843804 | doi-access=free }}</ref><ref>{{cite journal | last1=Eychenne | first1=Romain | last2=Chérel | first2=Michel | last3=Haddad | first3=Férid | last4=Guérard | first4=François | last5=Gestin | first5=Jean-François | title=Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The "Hopeful Eight" | journal=Pharmaceutics | publisher=MDPI AG | volume=13 | issue=6 | date=2021-06-18 | issn=1999-4923 | doi=10.3390/pharmaceutics13060906 | page=906 | pmid=34207408 | pmc=8234975 | doi-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)