Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Jacobi theta function== There are several closely related functions called Jacobi theta functions, and [[Jacobi theta functions (notational variations)|many different and incompatible systems of notation]] for them. One '''Jacobi theta function''' (named after [[Carl Gustav Jacob Jacobi]]) is a function defined for two complex variables {{mvar|z}} and {{mvar|τ}}, where {{mvar|z}} can be any [[complex number]] and {{mvar|τ}} is the [[half-period ratio]], confined to the [[upper half-plane]], which means it has a positive imaginary part. It is given by the formula :<math>\begin{align} \vartheta(z; \tau) &= \sum_{n=-\infty}^\infty \exp \left(\pi i n^2 \tau + 2 \pi i n z\right) \\ &= 1 + 2 \sum_{n=1}^\infty q^{n^2} \cos(2\pi n z) \\ &= \sum_{n=-\infty}^\infty q^{n^2}\eta^n \end{align}</math> where {{math|''q'' {{=}} exp(''πiτ'')}} is the [[nome (mathematics)|nome]] and {{math|''η'' {{=}} exp(2''πiz'')}}. It is a [[Jacobi form]]. The restriction ensures that it is an absolutely convergent series. At fixed {{mvar|τ}}, this is a [[Fourier series]] for a 1-periodic [[entire function]] of {{mvar|z}}. Accordingly, the theta function is 1-periodic in {{mvar|z}}: :<math>\vartheta(z+1; \tau) = \vartheta(z; \tau).</math> By [[completing the square]], it is also {{mvar|τ}}-quasiperiodic in {{mvar|z}}, with :<math>\vartheta(z+\tau;\tau) = \exp\bigl(-\pi i (\tau + 2 z)\bigr) \vartheta(z;\tau).</math> Thus, in general, :<math>\vartheta(z+a+b\tau;\tau) = \exp\left(-\pi i b^2 \tau -2 \pi i b z\right) \vartheta(z;\tau)</math> for any integers {{mvar|a}} and {{mvar|b}}. For any fixed <math>\tau </math>, the function is an entire function on the complex plane, so by [[Liouville's theorem (complex analysis)|Liouville's theorem]], it cannot be doubly periodic in <math>1, \tau </math> unless it is constant, and so the best we can do is to make it periodic in <math>1 </math> and quasi-periodic in <math>\tau </math>. Indeed, since <math display="block">\left|\frac{\vartheta(z+a+b\tau;\tau)}{\vartheta(z;\tau)}\right| = \exp\left(\pi (b^2 \Im(\tau) + 2b \Im(z)) \right) </math>and <math>\Im(\tau)> 0 </math>, the function <math>\vartheta(z, \tau) </math> is unbounded, as required by Liouville's theorem. It is in fact the most general entire function with 2 quasi-periods, in the following sense:<ref>{{Cite book |url=http://link.springer.com/10.1007/978-0-8176-4577-9 |title=Tata Lectures on Theta I |date=2007 |publisher=Birkhäuser Boston |isbn=978-0-8176-4572-4 |series=Modern Birkhäuser Classics |location=Boston, MA |pages=4 |language=en |doi=10.1007/978-0-8176-4577-9 }}</ref> {{Math theorem | math_statement = If <math>f: \mathbb C \to \mathbb C</math> is entire and nonconstant, and satisfies the functional equations <math> \begin{cases} f(z+1) = f(z)\\ f(z + \tau) = e^{az + 2\pi i b} f(z) \end{cases} </math> for some constant <math>a, b\in \mathbb C</math>. If <math>a = 0</math>, then <math>b = \tau</math> and <math>f(z) = e^{2\pi i z}</math>. If <math>a = -2\pi i</math>, then <math>f(z) = C \vartheta(z + \frac 1 2 \tau + b, \tau)</math> for some nonzero <math>C\in \mathbb C</math>. }}[[Image:Complex theta animated1.gif|500px|thumb|center|Theta function {{math|''θ''<sub>1</sub>}} with different nome {{math|''q'' {{=}} ''e''<sup>''iπτ''</sup>}}. The black dot in the right-hand picture indicates how {{mvar|q}} changes with {{mvar|τ}}.]] [[Image:Complex theta animated2.gif|500px|thumb|center|Theta function {{math|''θ''<sub>1</sub>}} with different nome {{math|''q'' {{=}} ''e''<sup>''iπτ''</sup>}}. The black dot in the right-hand picture indicates how {{mvar|q}} changes with {{mvar|τ}}.]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)