Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tomography
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Types of tomography== {| class="wikitable sortable" |- ! Name ! Source of data ! Abbreviation ! Year of introduction |- | [[Aerial tomography]] | [[Electromagnetic radiation]] | AT | 2020 |- | Array tomography<ref>{{cite journal |last1=Micheva |first1=Kristina D. |last2=Smith |first2=Stephen J |title=Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits |journal=Neuron |date=July 2007 |volume=55 |issue=1 |pages=25β36 |doi=10.1016/j.neuron.2007.06.014|pmid=17610815 |pmc=2080672 }}</ref> | [[Correlative light-electron microscopy|Correlative light and electron microscopy]] | AT | 2007 |- | [[Atom probe#Atom Probe Tomography (APT)|Atom probe tomography]] | [[Atom probe]] | APT | 1986 |- | [[Computed tomography imaging spectrometer]]<ref>{{cite journal |last1=Ford |first1=Bridget K. |last2=Volin |first2=Curtis E. |last3=Murphy |first3=Sean M. |last4=Lynch |first4=Ronald M. |last5=Descour |first5=Michael R. |title=Computed Tomography-Based Spectral Imaging For Fluorescence Microscopy |journal=Biophysical Journal |date=February 2001 |volume=80 |issue=2 |pages=986β993 |doi=10.1016/S0006-3495(01)76077-8|pmid=11159465 |pmc=1301296 |bibcode=2001BpJ....80..986F }}</ref> | [[Visible light]] [[spectral imaging]] | CTIS | 2001 |- | Computed tomography of chemiluminescence<ref>{{cite journal |last1=Floyd |first1=J. |last2=Geipel |first2=P. |last3=Kempf |first3=A.M. |title=Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame |journal=Combustion and Flame |date=February 2011 |volume=158 |issue=2 |pages=376β391 |doi=10.1016/j.combustflame.2010.09.006}}</ref><ref>{{cite journal |last1=Mohri |first1=K |last2=GΓΆrs |first2=S |last3=SchΓΆler |first3=J |last4=Rittler |first4=A |last5=Dreier |first5=T |last6=Schulz |first6=C |last7=Kempf |first7=A |title=Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence. |journal=Applied Optics |date=10 September 2017 |volume=56 |issue=26 |pages=7385β7395 |doi=10.1364/AO.56.007385 |pmid=29048060| bibcode=2017ApOpt..56.7385M }}</ref> | [[Chemiluminescence]] [[Flame]]s | CTC | 2009 |- | Confocal microscopy ([[laser scanning confocal microscopy]]) | [[Laser scanning confocal microscopy]] | LSCM | |- | [[Cryogenic electron tomography]] | [[Cryogenic transmission electron microscopy]] | CryoET | |- | [[Electrical capacitance tomography]] | [[Electrical capacitance]] | ECT | 1988<ref>{{Cite journal |first1=S M |last1=Huang |first2=A |last2=Plaskowski |first3=C G |last3=Xie |first4=M S |last4=Beck |title=Capacitance-based tomographic flow imaging system |journal=Electronics Letters |volume=24 |issue=7 |date=1988 |pages=418β19 |doi=10.1049/el:19880283 |bibcode=1988ElL....24..418H |language=en}}</ref> |- |[[Electrical capacitance volume tomography]] |[[Electrical capacitance]] |ECVT | |- | [[Electrical resistivity tomography]] | [[Electrical resistivity]] | ERT | |- | [[Electrical impedance tomography]] | [[Electrical impedance]] | EIT | 1984 |- |Atomic Mineral Resonance Tomography |Atomic Mineral Resonance Frequency |AMRT | |- | [[Electron tomography]]<ref>{{cite journal |last1=Van Aarle |first1=W. |last2=Palenstijn |first2=WJ. |last3=De Beenhouwer|first3=J|last4=Alantzis|first4=T|last5=Bals|first5=S|last6=Batenburg|first6=J|last7=Sijbers|first7=J|title=The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography |journal=Ultramicroscopy |date=2015 |volume=157 |pages=35β47 |doi=10.1016/j.ultramic.2015.05.002|hdl=10067/1278340151162165141|hdl-access=free}}</ref> | [[Transmission electron microscopy]] | ET |1968<ref>{{Cite journal|last1=Crowther|first1=R. A.|last2=DeRosier|first2=D. J.|last3=Klug|first3=A.|last4=S|first4=F. R.|date=1970-06-23|title=The reconstruction of a three-dimensional structure from projections and its application to electron microscopy|journal=Proc. R. Soc. Lond. A|language=en|volume=317|issue=1530|pages=319β340|doi=10.1098/rspa.1970.0119|issn=0080-4630|bibcode=1970RSPSA.317..319C|s2cid=122980366}}</ref><ref>{{Cite book|title=Electron tomography: methods for three-dimensional visualization of structures in the cell|url=https://archive.org/details/electrontomograp00fran_082|url-access=limited|date=2006|publisher=Springer|isbn=9780387690087| edition=2nd|location=New York|pages=[https://archive.org/details/electrontomograp00fran_082/page/n14 3]|oclc=262685610}}</ref> |- | [[Focal plane tomography]] | [[X-ray]] | | 1930s |- | [[Functional magnetic resonance imaging]] | [[Nuclear magnetic resonance|Magnetic resonance]] | fMRI | 1992 |- | [[Semiconductor detector#Radioactive Waste Assay Machines|Gamma-ray emission tomography]] ("Tomographic Gamma Scanning") | [[Gamma ray]] | TGS or ECT | |- | [[Industrial radiography#Sealed Radioactive Sources|Gamma-ray transmission tomography]] | [[Gamma ray]] | TCT |- | [[Hydraulic tomography]] | [[fluid flow]] | HT | 2000 |- | Infrared microtomographic imaging<ref>{{cite journal |last1=Martin |first1=Michael C |last2=Dabat-Blondeau |first2=Charlotte |last3=Unger |first3=Miriam |last4=Sedlmair |first4=Julia |last5=Parkinson |first5=Dilworth Y |last6=Bechtel |first6=Hans A |last7=Illman |first7=Barbara |last8=Castro |first8=Jonathan M |last9=Keiluweit |first9=Marco |last10=Buschke |first10=David |last11=Ogle |first11=Brenda |last12=Nasse |first12=Michael J |last13=Hirschmugl |first13=Carol J |title=3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography |journal=Nature Methods |date=September 2013 |volume=10 |issue=9 |pages=861β864 |doi=10.1038/nmeth.2596|pmid=23913258 | s2cid=9900276}}</ref> | [[Mid-infrared]] | | 2013 |- | [[Laser Ablation Tomography]] | [[Laser ablation]] & [[Fluorescence microscope|fluorescent microscopy]] | LAT | 2013 |- | [[Magnetic induction tomography]] | [[Electromagnetic induction|Magnetic induction]] | MIT | |- | [[Magnetic particle imaging]] | [[Superparamagnetism]] | MPI | 2005 |- | [[Magnetic resonance imaging]] or [[nuclear magnetic resonance]] tomography | [[Nuclear magnetic moment]] | MRI or MRT | |- | [[Multi-source tomography]]<ref>Cramer, A., Hecla, J., Wu, D. et al. Stationary Computed Tomography for Space and other Resource-constrained Environments. Sci Rep 8, 14195 (2018). [https://doi.org/10.1038/s41598-018-32505-z]</ref><ref>V. B. Neculaes, P. M. Edic, M. Frontera, A. Caiafa, G. Wang and B. De Man, "Multisource X-Ray and CT: Lessons Learned and Future Outlook," in IEEE Access, vol. 2, pp. 1568β1585, 2014, doi: 10.1109/ACCESS.2014.2363949.[https://www.researchgate.net/publication/273170153_Multisource_X-Ray_and_CT_Lessons_Learned_and_Future_Outlook]</ref> | [[X-ray]] | | |- | [[Muon tomography]] | [[Muon]] | | |- | [[Microwave tomography]]<ref>{{cite journal |last1=Ahadi |first1=Mojtaba |last2=Isa |first2=Maryam |last3=Saripan |first3=M. Iqbal |last4=Hasan |first4=W. Z. W. |title=Three dimensions localization of tumors in confocal microwave imaging for breast cancer detection |journal=Microwave and Optical Technology Letters |date=December 2015 |volume=57 |issue=12 |pages=2917β2929 |doi=10.1002/mop.29470|s2cid=122576324 |url=http://psasir.upm.edu.my/id/eprint/46731/1/Three%20dimensions%20localization%20of%20tumors%20in%20confocal%20microwave%20imaging%20for%20breast%20cancer%20detection.pdf }}</ref> | [[Microwave]] | | |- | [[Neutron tomography]] | [[Neutron]] | | |- | [[Neutron stimulated emission computed tomography]] | | | |- | [[Ocean acoustic tomography]] | [[Sonar]] | OAT | |- | [[Optical coherence tomography]] | [[Interferometry]] | OCT | |- | [[Optical tomography|Optical diffusion tomography]] | [[Absorption of light]] | ODT | |- | [[Optical projection tomography]] | [[Optical microscope]] | OPT | |- | [[Photoacoustic imaging in biomedicine]] | [[Photoacoustic spectroscopy]] | PAT | |- | [[Photoemission orbital tomography]] | [[Angle-resolved photoemission spectroscopy]] | POT | 2009<ref>{{cite journal |last1=Puschnig |first1=P. |last2=Berkebile |first2=S. |last3=Fleming |first3=A. J. |last4=Koller |first4=G. |last5=Emtsev |first5=K. |last6=Seyller |first6=T. |last7=Riley |first7=J. D. |last8=Ambrosch-Draxl |first8=C. |last9=Netzer |first9=F. P. |last10=Ramsey |first10=M. G. |title=Reconstruction of Molecular Orbital Densities from Photoemission Data |journal=Science |date=30 October 2009 |volume=326 |issue=5953 |pages=702β706 |doi=10.1126/science.1176105|pmid=19745118 |bibcode=2009Sci...326..702P |s2cid=5476218 }}</ref> |- | [[Positron emission tomography]] | [[Positron emission]] | PET | |- | [[Positron emission tomography - computed tomography]] | [[Positron emission]] & [[X-ray]] | PET-CT | |- | [[Quantum tomography]] | [[Quantum state]] | QST | |- | [[Single-photon emission computed tomography]] | [[Gamma ray]] | SPECT | |- | [[Seismic tomography]] | [[Seismic wave]]s | | |- | [[Terahertz tomography]] | [[Terahertz radiation]] | THz-CT | |- | [[Thermoacoustic imaging]] | [[Photoacoustic spectroscopy]] | TAT | |- | [[Ultrasound-modulated optical tomography]] | [[Ultrasound]] | UOT | |- | [[Ultrasound computer tomography]] | [[Ultrasound]] | USCT | |- | [[Ultrasound transmission tomography]] | [[Ultrasound]] | | |- | [[CT scan|X-ray computed tomography]] | [[X-ray]] | CT, CAT scan | 1971 |- | [[X-ray microtomography]]<ref>{{cite journal |last1=Van Aarle |first1=W. |last2=Palenstijn |first2=WJ. |last3=Cant |first3=J |last4=Janssens |first4=E|last5=Bleichrodt |first5=F|last6=Dabravolski|first6=A|last7=De Beenhouwer|first7=J|last8=Batenburg|first8=J|last9=Sijbers|first9=J|title=Fast and Flexible X-ray Tomography Using the ASTRA Toolbox |journal=Optics Express |date=February 2016 |volume=24 |issue=22 |pages=25129β25147 |doi=10.1364/OE.24.025129|hdl=10067/1392160151162165141 |hdl-access=free }}</ref> | [[X-ray]] | microCT | |- | [[Zeeman-Doppler imaging]] | [[Zeeman effect]] | | |} Some recent advances rely on using simultaneously integrated physical phenomena, e.g. X-rays for both [[computed tomography|CT]] and [[angiography]], combined [[CT scan|CT]]/[[MRI]] and combined CT/[[Positron emission tomography|PET]]. [[Discrete tomography]] and [[Geometric tomography]], on the other hand, are research areas{{citation needed|date=January 2013}} that deal with the reconstruction of objects that are discrete (such as crystals) or homogeneous. They are concerned with reconstruction methods, and as such they are not restricted to any of the particular (experimental) tomography methods listed above. ===Synchrotron X-ray tomographic microscopy=== A new technique called synchrotron X-ray tomographic microscopy ([[SRXTM]]) allows for detailed three-dimensional scanning of fossils.<ref>{{cite journal |last1=Donoghue |first1=PC |last2=Bengtson |first2=S |last3=Dong |first3=XP |last4=Gostling |first4=NJ |last5=Huldtgren |first5=T |last6=Cunningham |first6=JA |last7=Yin |first7=C |last8=Yue |first8=Z |last9=Peng |first9=F |last10=Stampanoni |first10=M |title=Synchrotron X-ray tomographic microscopy of fossil embryos. |journal=Nature |date=10 August 2006 |volume=442 |issue=7103 |pages=680β3 |doi=10.1038/nature04890 |pmid=16900198|bibcode = 2006Natur.442..680D | s2cid=4411929}}</ref><ref>{{Cite book|chapter-url=https://www.degruyter.com/document/doi/10.1515/9783110589771-004|doi=10.1515/9783110589771-004|chapter=Contributors to Volume 21|title=Metals, Microbes, and Minerals - the Biogeochemical Side of Life|year=2021|pages=xix-xxii|publisher=De Gruyter|isbn=9783110588903|s2cid=243434346}}</ref> The construction of third-generation [[Synchrotron light source|synchrotron sources]] combined with the tremendous improvement of detector technology, data storage and processing capabilities since the 1990s has led to a boost of high-end synchrotron tomography in materials research with a wide range of different applications, e.g. the visualization and quantitative analysis of differently absorbing phases, microporosities, cracks, precipitates or grains in a specimen. Synchrotron radiation is created by accelerating free particles in high vacuum. By the laws of electrodynamics this acceleration leads to the emission of electromagnetic radiation (Jackson, 1975). Linear particle acceleration is one possibility, but apart from the very high electric fields one would need it is more practical to hold the charged particles on a closed trajectory in order to obtain a source of continuous radiation. Magnetic fields are used to force the particles onto the desired orbit and prevent them from flying in a straight line. The radial acceleration associated with the change of direction then generates radiation.<ref>Banhart, John, ed. Advanced Tomographic Methods in Materials Research and Engineering. Monographs on the Physics and Chemistry of Materials. Oxford; New York: Oxford University Press, 2008.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)