Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Top quark condensate
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==History== The idea was described by [[Yoichiro Nambu]]{{citation needed|date=May 2020}} and subsequently developed by Miransky, Tanabashi, and Yamawaki (1989)<ref>{{cite journal |last1=Miransky |first1=V.A. |last2=Tanabashi |first2=Masaharu |last3=Yamawaki |first3=Koichi |title=Dynamical electroweak symmetry breaking with large anomalous dimension and t quark condensate |journal=Physics Letters B |publisher=Elsevier BV |volume=221 |issue=2 |year=1989 |issn=0370-2693 |doi=10.1016/0370-2693(89)91494-9 |pages=177β183 |bibcode=1989PhLB..221..177M}}</ref><ref>{{cite journal |last1=Miransky |first1=V.A. |last2=Tanabashi |first2=Masaharu |last3=Yamawaki |first3=Koichi |title=Is the t Quark Responsible for the Mass of W and Z Bosons? |journal=Modern Physics Letters A |publisher=World Scientific |volume=04 |issue=11 |pages=1043β1053 |date=1989-06-10 |df=dmy-all |issn=0217-7323 |doi=10.1142/s0217732389001210 |bibcode=1989MPLA....4.1043M}}</ref> and [[William A. Bardeen]], [[Christopher T. Hill]], and [[Manfred Lindner]] (1990),<ref>{{cite journal |author1=Bardeen, William A. |author2=Hill, Christopher T. |author3=Lindner, Manfred |name-list-style=amp |year=1990 |title=Minimal dynamical symmetry breaking of the standard model |journal=Physical Review D |volume=41 |issue=5 |pages=1647β1660 |doi=10.1103/PhysRevD.41.1647 |bibcode=1990PhRvD..41.1647B |pmid=10012522}}</ref> who connected the theory to the [[renormalization group]], and improved its predictions. The renormalization group reveals that top quark condensation is fundamentally based upon the ''[[infrared fixed point]]'' for the top quark Higgs-Yukawa coupling, proposed by Pendleton and Ross (1981)<ref>{{cite journal |last1=Pendleton |first1=B. |last2=Ross |first2=G.G. |title=Mass and mixing angle predictions from infra-red fixed points |journal=Physics Letters B |publisher=Elsevier BV |volume=98 |issue=4 |pages=291β294 |year=1981 |issn=0370-2693 |doi=10.1016/0370-2693(81)90017-4|bibcode=1981PhLB...98..291P }}</ref> and Hill.<ref>{{cite journal |last1=Hill |first1=C.T. |title=Quark and Lepton masses from Renormalization group fixed points |journal=Physical Review D |year=1981 |volume=24 |issue=3 |page=691 |doi=10.1103/PhysRevD.24.691 |bibcode=1981PhRvD..24..691H}}</ref> The "infrared" fixed point originally predicted that the top quark would be heavy, contrary to the prevailing view of the early 1980s. Indeed, the [[top quark]] was discovered in 1995 at the large mass of 174 GeV. The infrared-fixed point implies that it is strongly coupled to the Higgs boson at very high energies, corresponding to the [[Landau pole]] of the Higgs-Yukawa coupling. At this high scale a bound-state Higgs forms, and in the "infrared", the coupling relaxes to its measured value of order unity by the [[renormalization group]]. The Standard Model [[renormalization group]] fixed point prediction is about 220 GeV, and the observed top mass is roughly 20% lower than this prediction. The simplest top condensation models are now ruled out by the [[Large Hadron Collider|LHC]] discovery of the Higgs boson at a mass scale of 125 GeV. However, extended versions of the theory, introducing more particles, can be consistent with the observed top quark and Higgs boson masses.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)