Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Total suspended solids
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Measurement == TSS of a water or [[wastewater]] sample is determined by pouring a carefully measured volume of water (typically one [[litre]]; but less if the particulate density is high, or as much as two or three litres for very clean water) through a pre-weighed filter of a specified pore size, then weighing the filter again after the drying process that removes all water on the filter. Filters for TSS measurements are typically composed of [[glass fibre]]s.<ref>Michaud, Joy P. (1994). [http://www.ecy.wa.gov/programs/wq/plants/management/joysmanual/4tss.html "Measuring Total Suspended Solids and Turbidity in lakes and streams."] {{Webarchive|url=https://web.archive.org/web/20100730171415/http://www.ecy.wa.gov/programs/wq/plants/management/joysmanual/4tss.html |date=2010-07-30 }} ''A Citizen's Guide to Understanding and Monitoring Lakes and Streams.'' State of Washington, Department of Ecology.</ref> The gain in weight is a dry weight measure of the particulates present in the water sample expressed in units derived or calculated from the volume of water filtered (typically milligrams per litre or mg/L). If the water contains an appreciable amount of dissolved substances (as certainly would be the case when measuring TSS in [[seawater]]), these will add to the weight of the filter as it is dried. Therefore, it is necessary to "wash" the filter and sample with [[deionized water]] after filtering the sample and before drying the filter. Failure to add this step is a fairly common mistake made by inexperienced laboratory technicians working with sea water samples, and will completely invalidate the results as the weight of salts left on the filter during drying can easily exceed that of the suspended particulate matter. Although [[turbidity]] purports to measure approximately the same water quality property as TSS, the latter is preferred when available as it provides an actual weight of the particulate material present in the sample. In water quality monitoring situations, a series of more labor-intensive TSS measurements will be paired with relatively quick and easy turbidity measurements to develop a site-specific correlation. Once satisfactorily established, the correlation can be used to estimate TSS from more frequently made turbidity measurements, saving time and effort. Because turbidity readings are somewhat dependent on particle size, shape, and color, this approach requires calculating a correlation equation for each location. Further, situations or conditions that tend to suspend larger particles through water motion (e.g., increase in a [[current (stream)|stream current]] or wave action) can produce higher values of TSS not necessarily accompanied by a corresponding increase in turbidity. This is because particles above a certain size (essentially anything larger than silt) are not measured by a bench turbidity meter (they settle out before the reading is taken), but contribute substantially to the TSS value.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)