Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trace (linear algebra)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == The '''trace''' of an {{math|''n'' Γ ''n''}} [[square matrix]] {{math|'''A'''}} is defined as<ref name=":1"/><ref name=":2">{{cite encyclopedia |title=Trace (matrix) |last1=Weisstein |first1=Eric W. |author1-link=Eric W. Weisstein |editor1-first=Eric W. |editor1-last=Weisstein |encyclopedia=[[CRC Concise Encyclopedia of Mathematics]] |edition=2nd |orig-date=1999 |year=2003 |publisher=[[Chapman & Hall]] |location=Boca Raton, FL |isbn=1-58488-347-2|mr=1944431 |url=https://mathworld.wolfram.com/MatrixTrace.html|access-date=2020-09-09|zbl=1079.00009|doi=10.1201/9781420035223|url-access=subscription }} </ref><ref name=LipschutzLipson>{{cite book |first1=Seymour |last1=Lipschutz |first2=Marc |last2=Lipson |date=September 2005 |title=Theory and Problems of Linear Algebra |series=Schaum's Outline |publisher=McGraw-Hill |isbn=9780070605022 }}</ref>{{rp|34}} <math display="block">\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^n a_{ii} = a_{11} + a_{22} + \dots + a_{nn}</math> where {{math|''a<sub>ii</sub>''}} denotes the entry on the {{nobr|{{mvar|i}} th}} row and {{nobr|{{mvar|i}} th}} column of {{math|'''A'''}}. The entries of {{math|'''A'''}} can be [[real number]]s, [[complex numbers]], or more generally elements of a [[field (mathematics)|field]] {{mvar|F}}. The trace is not defined for non-square matrices.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)