Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Transitive closure
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Transitive relations and examples == A relation ''R'' on a set ''X'' is transitive if, for all ''x'', ''y'', ''z'' in ''X'', whenever {{nowrap|''x R y''}} and {{nowrap|''y R z''}} then {{nowrap|''x R z''}}. Examples of transitive relations include the equality relation on any set, the "less than or equal" relation on any linearly ordered set, and the relation "''x'' was born before ''y''" on the set of all people. Symbolically, this can be denoted as: if {{nowrap|''x'' < ''y''}} and {{nowrap|''y'' < ''z''}} then {{nowrap|''x'' < ''z''}}. One example of a non-transitive relation is "city ''x'' can be reached via a direct flight from city ''y''" on the set of all cities. Simply because there is a direct flight from one city to a second city, and a direct flight from the second city to the third, does not imply there is a direct flight from the first city to the third. The transitive closure of this relation is a different relation, namely "there is a sequence of direct flights that begins at city ''x'' and ends at city ''y''". Every relation can be extended in a similar way to a transitive relation. An example of a non-transitive relation with a less meaningful transitive closure is "''x'' is the [[day of the week]] after ''y''". The transitive closure of this relation is "some day ''x'' comes after a day ''y'' on the calendar", which is trivially true for all days of the week ''x'' and ''y'' (and thus equivalent to the [[Cartesian product|Cartesian square]], which is "''x'' and ''y'' are both days of the week").
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)