Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trigonometric substitution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Case I: Integrands containing ''a''<sup>2</sup> β ''x''<sup>2</sup>== Let <math>x = a \sin \theta,</math> and use the [[list of trigonometric identities|identity]] <math>1-\sin^2 \theta = \cos^2 \theta.</math> ===Examples of Case I=== [[File:Trig Sub Triangle 1.png|thumb|Geometric construction for Case I]] ====Example 1==== In the integral <math display=block>\int\frac{dx}{\sqrt{a^2-x^2}},</math> we may use <math display=block>x=a\sin \theta,\quad dx=a\cos\theta\, d\theta, \quad \theta=\arcsin\frac{x}{a}.</math> Then, <math display=block>\begin{align} \int\frac{dx}{\sqrt{a^2-x^2}} &= \int\frac{a\cos\theta \,d\theta}{\sqrt{a^2-a^2\sin^2 \theta}} \\[6pt] &= \int\frac{a\cos\theta\,d\theta}{\sqrt{a^2(1 - \sin^2 \theta )}} \\[6pt] &= \int\frac{a\cos\theta\,d\theta}{\sqrt{a^2\cos^2\theta}} \\[6pt] &= \int d\theta \\[6pt] &= \theta + C \\[6pt] &= \arcsin\frac{x}{a}+C. \end{align}</math> The above step requires that <math>a > 0</math> and <math>\cos \theta > 0.</math> We can choose <math>a</math> to be the principal root of <math>a^2,</math> and impose the restriction <math>-\pi /2 < \theta < \pi /2</math> by using the inverse sine function. For a definite integral, one must figure out how the bounds of integration change. For example, as <math>x</math> goes from <math>0</math> to <math>a/2,</math> then <math>\sin \theta</math> goes from <math>0</math> to <math>1/2,</math> so <math>\theta</math> goes from <math>0</math> to <math>\pi / 6.</math> Then, <math display=block>\int_0^{a/2}\frac{dx}{\sqrt{a^2-x^2}}=\int_0^{\pi/6} d\theta = \frac{\pi}{6}.</math> Some care is needed when picking the bounds. Because integration above requires that <math>-\pi /2 < \theta < \pi /2</math> , <math>\theta</math> can only go from <math>0</math> to <math>\pi / 6.</math> Neglecting this restriction, one might have picked <math>\theta</math> to go from <math>\pi</math> to <math>5\pi /6,</math> which would have resulted in the negative of the actual value. Alternatively, fully evaluate the indefinite integrals before applying the boundary conditions. In that case, the antiderivative gives <math display=block>\int_{0}^{a/2} \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \left( \frac{x}{a} \right) \Biggl|_{0}^{a/2} = \arcsin \left ( \frac{1}{2}\right) - \arcsin (0) = \frac{\pi}{6}</math> as before. ====Example 2==== The integral <math display=block>\int\sqrt{a^2-x^2}\,dx,</math> may be evaluated by letting <math display="inline">x=a\sin \theta,\, dx=a\cos\theta\, d\theta,\, \theta=\arcsin\dfrac{x}{a},</math> where <math>a > 0</math> so that <math display="inline">\sqrt{a^2}=a,</math> and <math display="inline">-\pi/2 \le \theta \le \pi/2</math> by the range of arcsine, so that <math>\cos \theta \ge 0</math> and <math display="inline">\sqrt{\cos^2 \theta} = \cos \theta.</math> Then, <math display=block>\begin{align} \int\sqrt{a^2-x^2}\,dx &= \int\sqrt{a^2-a^2\sin^2\theta}\,(a\cos\theta) \,d\theta \\[6pt] &= \int\sqrt{a^2(1-\sin^2\theta)}\,(a\cos\theta) \,d\theta \\[6pt] &= \int\sqrt{a^2(\cos^2\theta)}\,(a\cos\theta) \,d\theta \\[6pt] &= \int(a\cos\theta)(a\cos\theta) \,d\theta \\[6pt] &= a^2\int\cos^2\theta\,d\theta \\[6pt] &= a^2\int\left(\frac{1+\cos 2\theta}{2}\right)\,d\theta \\[6pt] &= \frac{a^2}{2} \left(\theta+\frac{1}{2}\sin 2\theta \right) + C \\[6pt] &= \frac{a^2}{2}(\theta+\sin\theta\cos\theta) + C \\[6pt] &= \frac{a^2}{2}\left(\arcsin\frac{x}{a}+\frac{x}{a}\sqrt{1-\frac{x^2}{a^2}}\right) + C \\[6pt] &= \frac{a^2}{2}\arcsin\frac{x}{a}+\frac{x}{2}\sqrt{a^2-x^2}+C. \end{align}</math> For a definite integral, the bounds change once the substitution is performed and are determined using the equation <math display="inline">\theta = \arcsin\dfrac{x}{a},</math> with values in the range <math display="inline">-\pi/2 \le \theta \le \pi/2.</math> Alternatively, apply the boundary terms directly to the formula for the antiderivative. For example, the definite integral <math display=block>\int_{-1}^1\sqrt{4-x^2}\,dx,</math> may be evaluated by substituting <math>x = 2\sin\theta, \,dx = 2\cos\theta\,d\theta,</math> with the bounds determined using <math display="inline">\theta = \arcsin\dfrac{x}{2}.</math> Because <math>\arcsin(1/{2}) = \pi/6</math> and <math>\arcsin(-1/2) = -\pi/6,</math> <math display=block>\begin{align} \int_{-1}^1\sqrt{4-x^2}\,dx &= \int_{-\pi/6}^{\pi/6}\sqrt{4-4\sin^2\theta}\,(2\cos\theta) \,d\theta \\[6pt] &= \int_{-\pi/6}^{\pi/6}\sqrt{4(1-\sin^2\theta)}\,(2\cos\theta) \,d\theta \\[6pt] &= \int_{-\pi/6}^{\pi/6}\sqrt{4(\cos^2\theta)}\,(2\cos\theta) \,d\theta \\[6pt] &= \int_{-\pi/6}^{\pi/6}(2\cos\theta)(2\cos\theta) \,d\theta \\[6pt] &= 4\int_{-\pi/6}^{\pi/6}\cos^2\theta\,d\theta \\[6pt] &= 4\int_{-\pi/6}^{\pi/6}\left(\frac{1+\cos 2\theta}{2}\right)\,d\theta \\[6pt] &= 2 \left[\theta+\frac{1}{2} \sin 2\theta \right]^{\pi/6}_{-\pi/6} = [2\theta+\sin 2\theta] \Biggl |^{\pi/6}_{-\pi/6} \\[6pt] &= \left(\frac{\pi}{3}+\sin\frac{\pi}{3}\right)-\left(-\frac{\pi}{3}+\sin\left(-\frac{\pi}{3}\right)\right) = \frac{2\pi}{3}+\sqrt{3}. \end{align}</math> On the other hand, direct application of the boundary terms to the previously obtained formula for the antiderivative yields <math display=block>\begin{align} \int_{-1}^1\sqrt{4-x^2}\,dx &= \left[ \frac{2^2}{2}\arcsin\frac{x}{2}+\frac{x}{2}\sqrt{2^2-x^2} \right]_{-1}^{1}\\[6pt] &= \left( 2 \arcsin \frac{1}{2} + \frac{1}{2}\sqrt{4-1}\right) - \left( 2 \arcsin \left(-\frac{1}{2}\right) + \frac{-1}{2}\sqrt{4-1}\right)\\[6pt] &= \left( 2 \cdot \frac{\pi}{6} + \frac{\sqrt{3}}{2}\right) - \left( 2\cdot \left(-\frac{\pi}{6}\right) - \frac{\sqrt 3}{2}\right)\\[6pt] &= \frac{2\pi}{3} + \sqrt{3} \end{align} </math> as before.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)