Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Twistor theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Overview<!--'Ambitwistor' and 'Super-ambitwistor' redirect here-->== [[Projective space|Projective]] [[twistor space]] <math>\mathbb{PT}</math> is [[Projective space|projective 3-space]] <math>\mathbb{CP}^3</math>, the simplest [[3-dimensional]] [[complex manifold|compact algebraic variety]]. It has a physical interpretation as the space of [[massless particle]]s with [[Spin (physics)|spin]]. It is the [[projectivisation]] of a 4-dimensional [[complex vector space]], non-projective twistor space <math>\mathbb{T}</math>, with a [[Hermitian form]] of [[Metric signature|signature]] (2, 2) and a [[holomorphic]] [[volume form]]. This can be most naturally understood as the space of [[Chirality (physics)|chiral]] ([[Weyl spinor|Weyl]]) [[spinor]]s for the [[conformal group]] <math>SO(4,2)/\mathbb{Z}_2</math> of [[Minkowski space]]; it is the [[fundamental representation]] of the [[spin group]] <math>SU(2,2)</math> of the conformal group. This definition can be extended to arbitrary dimensions except that beyond dimension four, one defines projective twistor space to be the space of projective [[pure spinor]]s<ref name="HS1">{{cite journal | last1=Harnad | first1=J. | last2=Shnider | first2=S. | title=Isotropic geometry and twistors in higher dimensions. I. The generalized Klein correspondence and spinor flags in even dimensions | journal=Journal of Mathematical Physics | volume=33 | issue=9 | year=1992 | doi=10.1063/1.529538 | pages=3197–3208 | bibcode=1992JMP....33.3197H }}</ref><ref name="HS2">{{cite journal | last1=Harnad | first1=J. | last2=Shnider | first2=S. | title=Isotropic geometry and twistors in higher dimensions. II. Odd dimensions, reality conditions, and twistor superspaces | journal=Journal of Mathematical Physics | volume=36 | issue=9 | year=1995 | doi=10.1063/1.531096 | pages=1945–1970 | doi-access=free | bibcode=1995JMP....36.1945H }} </ref> for the conformal group.<ref name="PenRin">{{Cite book |title=Spinors and Space-Time |last1=Penrose |first1=Roger |last2=Rindler |first2=Wolfgang |publisher=Cambridge University Press |year=1986 |isbn=9780521252676 |pages=Appendix |language=en |doi=10.1017/cbo9780511524486}}</ref><ref>{{Cite journal |last1=Hughston |first1=L. P. |last2=Mason |first2=L. J. |date=1988 |title=A generalised Kerr-Robinson theorem |journal=Classical and Quantum Gravity |language=en |volume=5 |issue=2 |pages=275 |doi=10.1088/0264-9381/5/2/007 |issn=0264-9381 |bibcode=1988CQGra...5..275H |s2cid=250783071 }}</ref> In its original form, twistor theory encodes [[physical field]]s on Minkowski space in terms of [[complex analytic]] objects on twistor space via the [[Penrose transform]]. This is especially natural for [[Massless particle|massless fields]] of arbitrary [[Spin (physics)|spin]]. In the first instance these are obtained via [[contour integral]] formulae in terms of free holomorphic functions on regions in twistor space. The holomorphic twistor functions that give rise to solutions to the massless field equations can be more deeply understood as [[Čech cohomology|Čech]] representatives of analytic [[cohomology classes]] on regions in <math>\mathbb{PT}</math>. These correspondences have been extended to certain nonlinear fields, including [[self-dual]] gravity in Penrose's [[Einstein field equations#Nonlinearity|nonlinear]] [[graviton]] construction<ref name="Penrose1976">{{cite journal | last1 = Penrose | first1 = R. | year = 1976 | title = Non-linear gravitons and curved twistor theory | url = | journal = Gen. Rel. Grav. | volume = 7 | issue = 1 | pages = 31–52 | doi = 10.1007/BF00762011 | bibcode = 1976GReGr...7...31P | s2cid = 123258136 }}</ref> and self-dual [[Yang–Mills field]]s in the so-called Ward construction;<ref>{{Cite journal |last=Ward |first=R. S. |author-link=Richard S. Ward |title=On self-dual gauge fields |journal=Physics Letters A |volume=61 |issue=2 |pages=81–82 |doi=10.1016/0375-9601(77)90842-8 |year=1977 |bibcode=1977PhLA...61...81W}}</ref> the former gives rise to [[Deformation (mathematics)|deformations]] of the underlying complex structure of regions in <math>\mathbb{PT}</math>, and the latter to certain holomorphic vector bundles over regions in <math>\mathbb{PT}</math>. These constructions have had wide applications, including inter alia the theory of [[integrable system]]s.<ref>{{Cite book |title=Twistor geometry and field theory |last=Ward |first=R. S. |date=1990 |publisher=Cambridge University Press |others=Wells, R. O. |isbn=978-0521422680 |location=Cambridge [England] |oclc=17260289}}</ref><ref>{{Cite book |title=Integrability, self-duality, and twistor theory |last1=Mason |first1=Lionel J. |last2=Woodhouse |first2=Nicholas M. J. |date=1996 |publisher=Clarendon Press |isbn=9780198534983 |location=Oxford |oclc=34545252}}</ref><ref>{{Cite book |title=Solitons, instantons, and twistors |last=Dunajski |first=Maciej |date=2010 |publisher=Oxford University Press |isbn=9780198570622 |location=Oxford |oclc=507435856}}</ref> The self-duality condition is a major limitation for incorporating the full nonlinearities of physical theories, although it does suffice for [[Yang–Mills–Higgs equations|Yang–Mills–Higgs]] [[Magnetic monopole|monopoles]] and [[instanton]]s (see [[ADHM construction]]).<ref>{{Cite journal |last1=Atiyah |first1=M. F. |last2=Hitchin |first2=N. J. |last3=Drinfeld |first3=V. G. |last4=Manin |first4=Yu. I. |title=Construction of instantons |journal=Physics Letters A |volume=65 |issue=3 |pages=185–187 |doi=10.1016/0375-9601(78)90141-x |year=1978 |bibcode=1978PhLA...65..185A}}</ref> An early attempt to overcome this restriction was the introduction of '''ambitwistors'''<!--boldface per WP:R#PLA--> by Isenberg, Yasskin and Green,<ref name="IYG">{{Cite journal| last1=Isenberg |first1=James |last2=Yasskin |first2=Philip B. |last3=Green |first3=Paul S. |title=Non-self-dual gauge fields |journal=Physics Letters B |volume=78 |issue=4 |pages=462–464 |doi=10.1016/0370-2693(78)90486-0 |year=1978 |bibcode=1978PhLB...78..462I}}</ref> and their [[superspace]] extension, '''super-ambitwistors'''<!--boldface per WP:R#PLA-->, by [[Edward Witten]].<ref name = "Wi1">{{Cite journal |last=Witten |first=Edward |title=An interpretation of classical Yang–Mills theory |journal=Physics Letters B |volume=77 |issue=4–5 |pages=394–398 |doi=10.1016/0370-2693(78)90585-3 |year=1978 |bibcode=1978PhLB...77..394W}}</ref> Ambitwistor space is the space of complexified light rays or massless particles and can be regarded as a [[complexification]] or [[cotangent bundle]] of the original twistor description. By extending the ambitwistor correspondence to suitably defined formal neighborhoods, Isenberg, Yasskin and Green<ref name="IYG"/> showed the equivalence between the vanishing of the curvature along such extended null lines and the full Yang–Mills field equations.<ref name="IYG"/> Witten<ref name="Wi1"/> showed that a further extension, within the framework of super Yang–Mills theory, including [[Fermionic field|fermionic]] and scalar fields, gave rise, in the case of ''N'' = 1 or 2 [[supersymmetry]], to the constraint equations, while for ''N'' = 3 (or 4), the vanishing condition for supercurvature along super null lines (super ambitwistors) implied the full set of [[N = 4 supersymmetric Yang–Mills theory|field equations]], including those for the fermionic fields. This was subsequently shown to give a {{clarify span|1-1|date=May 2024}} equivalence between the null curvature constraint equations and the supersymmetric Yang-Mills field equations.<ref name = "HLHS">{{Cite journal | last1=Harnad | first1=J. | last2=Légaré | first2=M. | last3=Hurtubise | first3=J. | last4=Shnider | first4=S. | title=Constraint equations and field equations in supersymmetric N = 3 Yang-Mills theory | journal=Nuclear Physics B | volume=256 | pages=609–620 | doi=10.1016/0550-3213(85)90410-9 | year=1985 | bibcode=1985NuPhB.256..609H }}</ref><ref name = "HHS">{{Cite journal | last1=Harnad | first1=J. | last2=Hurtubise | first2=J. | last3=Shnider | first3=S. | title=Supersymmetric Yang-Mills equations and supertwistors | journal=Annals of Physics | volume=193 | issue=1 | pages=40–79 | doi=10.1016/0003-4916(89)90351-5 | year=1989 | bibcode=1989AnPhy.193...40H }}</ref> Through dimensional reduction, it may also be deduced from the analogous super-ambitwistor correspondence for 10-dimensional, ''N'' = 1 super-Yang–Mills theory.<ref name=W2>{{cite journal | first1=E. | last1=Witten | title=Twistor-like transform in ten dimensions | journal=Nuclear Physics | volume=B266 | pages=245–264 | year=1986 | issue=2 | doi=10.1016/0550-3213(86)90090-8 | bibcode=1986NuPhB.266..245W }}</ref><ref name=HS>{{cite journal | first1=J. | last1=Harnad | first2=S. | last2=Shnider | title=Constraints and Field Equations for Ten Dimensional Super Yang-Mills Theory | journal=Commun. Math. Phys. | volume=106 | pages=183–199 | year=1986 | issue=2 | doi=10.1007/BF01454971 | bibcode=1986CMaPh.106..183H | s2cid=122622189 | url=http://projecteuclid.org/euclid.cmp/1104115696 }}</ref> Twistorial formulae for [[Fundamental interaction|interactions]] beyond the self-dual sector also arose in Witten's [[twistor string theory]],<ref name="Witten2004">{{cite journal |last1=Witten |first1=Edward |date=2004 |title=Perturbative Gauge Theory as a String Theory in Twistor Space |journal=Communications in Mathematical Physics |volume=252 |issue=1–3 |pages=189–258 |arxiv=hep-th/0312171 |bibcode=2004CMaPh.252..189W |doi=10.1007/s00220-004-1187-3 |s2cid=14300396}}</ref> which is a quantum theory of holomorphic maps of a [[Riemann surface]] into twistor space. This gave rise to the remarkably compact RSV (Roiban, Spradlin and Volovich) formulae for tree-level [[S-matrices]] of Yang–Mills theories,<ref>{{Cite journal |last1=Roiban |first1=Radu |last2=Spradlin |first2=Marcus |last3=Volovich |first3=Anastasia |date=2004-07-30 |title=Tree-level S matrix of Yang–Mills theory |journal=Physical Review D |volume=70 |issue=2 |pages=026009 |doi=10.1103/PhysRevD.70.026009 |bibcode=2004PhRvD..70b6009R |arxiv=hep-th/0403190 |s2cid=10561912}}</ref> but its gravity degrees of freedom gave rise to a version of conformal [[supergravity]] limiting its applicability; [[conformal gravity]] is an unphysical theory containing [[Ghost (physics)|ghosts]], but its interactions are combined with those of Yang–Mills theory in loop amplitudes calculated via twistor string theory.<ref>{{Cite journal |last1=Berkovits |first1=Nathan |last2=Witten |first2=Edward |date=2004 |title=Conformal supergravity in twistor-string theory |journal=Journal of High Energy Physics |language=en |volume=2004 |issue=8 |pages=009 |doi=10.1088/1126-6708/2004/08/009 |issn=1126-6708 |bibcode=2004JHEP...08..009B |arxiv=hep-th/0406051 |s2cid=119073647}}</ref> Despite its shortcomings, twistor string theory led to rapid developments in the study of scattering amplitudes. One was the so-called MHV formalism<ref>{{Cite journal |last1=Cachazo |first1=Freddy |last2=Svrcek |first2=Peter |last3=Witten |first3=Edward |date=2004 |title=MHV vertices and tree amplitudes in gauge theory |journal=Journal of High Energy Physics |language=en |volume=2004 |issue=9 |pages=006 |doi=10.1088/1126-6708/2004/09/006 |issn=1126-6708 |bibcode=2004JHEP...09..006C |arxiv=hep-th/0403047 |s2cid=16328643}}</ref> loosely based on disconnected strings, but was given a more basic foundation in terms of a twistor action for full Yang–Mills theory in twistor space.<ref>{{Cite journal |last1=Adamo |first1=Tim |last2=Bullimore |first2=Mathew |last3=Mason |first3=Lionel |last4=Skinner |first4=David |title=Scattering amplitudes and Wilson loops in twistor space |journal=Journal of Physics A: Mathematical and Theoretical |volume=44 |issue=45 |pages=454008 |doi=10.1088/1751-8113/44/45/454008 |year=2011 |bibcode=2011JPhA...44S4008A |arxiv=1104.2890 |s2cid=59150535}}</ref> Another key development was the introduction of [[BCFW recursion]].<ref>{{Cite journal |last1=Britto |first1=Ruth |author1-link= Ruth Britto |last2=Cachazo |first2=Freddy |last3=Feng |first3=Bo |last4=Witten |first4=Edward |date=2005-05-10 |title=Direct Proof of the Tree-Level Scattering Amplitude Recursion Relation in Yang–Mills Theory |journal=Physical Review Letters |volume=94 |issue=18 |pages=181602 |doi=10.1103/PhysRevLett.94.181602 |pmid=15904356 |bibcode=2005PhRvL..94r1602B |arxiv=hep-th/0501052 |s2cid=10180346}}</ref> This has a natural formulation in twistor space<ref>{{Cite journal |last1=Mason |first1=Lionel |last2=Skinner |first2=David |date=2010-01-01 |title=Scattering amplitudes and BCFW recursion in twistor space |journal=Journal of High Energy Physics |language=en |volume=2010 |issue=1 |pages=64 |doi=10.1007/JHEP01(2010)064 |issn=1029-8479 |bibcode=2010JHEP...01..064M |arxiv=0903.2083 |s2cid=8543696}}</ref><ref>{{Cite journal |last1=Arkani-Hamed |first1=N. |last2=Cachazo |first2=F. |last3=Cheung |first3=C. |last4=Kaplan |first4=J. |date=2010-03-01 |title=The S-matrix in twistor space |journal=Journal of High Energy Physics |language=en |volume=2010 |issue=3 |pages=110 |doi=10.1007/JHEP03(2010)110 |issn=1029-8479 |bibcode=2010JHEP...03..110A |arxiv=0903.2110 |s2cid=15898218}}</ref> that in turn led to remarkable formulations of scattering amplitudes in terms of [[Grassmann integral]] formulae<ref>{{Cite journal |last1=Arkani-Hamed |first1=N. |last2=Cachazo |first2=F. |last3=Cheung |first3=C. |last4=Kaplan |first4=J. |date=2010-03-01 |title=A duality for the S matrix |journal=Journal of High Energy Physics |language=en |volume=2010 |issue=3 |pages=20 |doi=10.1007/JHEP03(2010)020 |issn=1029-8479 |bibcode=2010JHEP...03..020A |arxiv=0907.5418 |s2cid=5771375}}</ref><ref>{{Cite journal |last1=Mason |first1=Lionel |last2=Skinner |first2=David |date=2009 |title=Dual superconformal invariance, momentum twistors and Grassmannians |journal=Journal of High Energy Physics |language=en |volume=2009 |issue=11 |pages=045 |doi=10.1088/1126-6708/2009/11/045 |issn=1126-6708 |bibcode=2009JHEP...11..045M |arxiv=0909.0250 |s2cid=8375814}}</ref> and [[polytope]]s.<ref>{{Cite journal |last=Hodges |first=Andrew |date=2013-05-01 |title=Eliminating spurious poles from gauge-theoretic amplitudes |journal=Journal of High Energy Physics |language=en |volume=2013 |issue=5 |pages=135 |doi=10.1007/JHEP05(2013)135 |issn=1029-8479 |bibcode=2013JHEP...05..135H |arxiv=0905.1473 |s2cid=18360641}}</ref> These ideas have evolved more recently into the positive [[Grassmannian]]<ref>{{cite arXiv |last1=Arkani-Hamed |first1=Nima |last2=Bourjaily |first2=Jacob L. |last3=Cachazo |first3=Freddy |last4=Goncharov |first4=Alexander B. |last5=Postnikov |first5=Alexander |last6=Trnka |first6=Jaroslav |date=2012-12-21 |title=Scattering Amplitudes and the Positive Grassmannian |eprint=1212.5605 |class=hep-th}}</ref> and [[amplituhedron]]. Twistor string theory was extended first by generalising the RSV Yang–Mills amplitude formula, and then by finding the underlying [[string theory]]. The extension to gravity was given by Cachazo & Skinner,<ref>{{Cite journal |last1=Cachazo |first1=Freddy |last2=Skinner |first2=David |date=2013-04-16 |title=Gravity from Rational Curves in Twistor Space |journal=Physical Review Letters |volume=110 |issue=16 |pages=161301 |doi=10.1103/PhysRevLett.110.161301 |pmid=23679592 |bibcode=2013PhRvL.110p1301C |arxiv=1207.0741 |s2cid=7452729}}</ref> and formulated as a twistor string theory for [[maximal supergravity]] by David Skinner.<ref>{{cite arXiv |last=Skinner |first=David |date=2013-01-04 |title=Twistor Strings for ''N'' = 8 Supergravity |eprint=1301.0868 |class=hep-th}}</ref> Analogous formulae were then found in all dimensions by Cachazo, He and Yuan for Yang–Mills theory and gravity<ref>{{Cite journal |last1=Cachazo |first1=Freddy |last2=He |first2=Song |last3=Yuan |first3=Ellis Ye |date=2014-07-01 |title=Scattering of massless particles: scalars, gluons and gravitons |journal=Journal of High Energy Physics |language=en |volume=2014 |issue=7 |pages=33 |doi=10.1007/JHEP07(2014)033 |issn=1029-8479 |bibcode=2014JHEP...07..033C |arxiv=1309.0885 |s2cid=53685436}}</ref> and subsequently for a variety of other theories.<ref>{{Cite journal |last1=Cachazo |first1=Freddy |last2=He |first2=Song |last3=Yuan |first3=Ellis Ye |date=2015-07-01 |title=Scattering equations and matrices: from Einstein to Yang–Mills, DBI and NLSM |journal=Journal of High Energy Physics |language=en |volume=2015 |issue=7 |pages=149 |doi=10.1007/JHEP07(2015)149 |issn=1029-8479 |bibcode=2015JHEP...07..149C |arxiv=1412.3479 |s2cid=54062406}}</ref> They were then understood as string theories in ambitwistor space by Mason and Skinner<ref>{{Cite journal |last1=Mason |first1=Lionel |last2=Skinner |first2=David |date=2014-07-01 |title=Ambitwistor strings and the scattering equations |journal=Journal of High Energy Physics |language=en |volume=2014 |issue=7 |pages=48 |doi=10.1007/JHEP07(2014)048 |issn=1029-8479 |bibcode=2014JHEP...07..048M |arxiv=1311.2564 |s2cid=53666173}}</ref> in a general framework that includes the original twistor string and extends to give a number of new models and formulae.<ref>{{Cite journal |last=Berkovits |first=Nathan |date=2014-03-01 |title=Infinite tension limit of the pure spinor superstring |journal=Journal of High Energy Physics |language=en |volume=2014 |issue=3 |pages=17 |doi=10.1007/JHEP03(2014)017 |issn=1029-8479 |bibcode=2014JHEP...03..017B |arxiv=1311.4156 |s2cid=28346354}}</ref><ref>{{Cite journal |last1=Geyer |first1=Yvonne |last2=Lipstein |first2=Arthur E. |last3=Mason |first3=Lionel |date=2014-08-19 |title=Ambitwistor Strings in Four Dimensions |journal=Physical Review Letters |volume=113 |issue=8 |pages=081602 |doi=10.1103/PhysRevLett.113.081602 |pmid=25192087 |bibcode=2014PhRvL.113h1602G |arxiv=1404.6219 |s2cid=40855791}}</ref><ref>{{Cite journal |last1=Casali |first1=Eduardo |last2=Geyer |first2=Yvonne |last3=Mason |first3=Lionel |last4=Monteiro |first4=Ricardo |last5=Roehrig |first5=Kai A. |date=2015-11-01 |title=New ambitwistor string theories |journal=Journal of High Energy Physics |language=en |volume=2015 |issue=11 |pages=38 |doi=10.1007/JHEP11(2015)038 |issn=1029-8479 |bibcode=2015JHEP...11..038C |arxiv=1506.08771 |s2cid=118801547}}</ref> As string theories they have the same [[critical dimension]]s as conventional string theory; for example the [[Type II string theory|type II]] supersymmetric versions are critical in ten dimensions and are equivalent to the full field theory of type II supergravities in ten dimensions (this is distinct from conventional string theories that also have a further infinite hierarchy of massive higher spin states that provide an [[ultraviolet completion]]). They extend to give formulae for loop amplitudes<ref>{{Cite journal |last1=Adamo |first1=Tim |last2=Casali |first2=Eduardo |last3=Skinner |first3=David |date=2014-04-01 |title=Ambitwistor strings and the scattering equations at one loop |journal=Journal of High Energy Physics |language=en |volume=2014 |issue=4 |pages=104 |doi=10.1007/JHEP04(2014)104 |issn=1029-8479 |bibcode=2014JHEP...04..104A |arxiv=1312.3828 |s2cid=119194796}}</ref><ref>{{Cite journal |last1=Geyer |first1=Yvonne |last2=Mason |first2=Lionel |last3=Monteiro |first3=Ricardo |last4=Tourkine |first4=Piotr |date=2015-09-16 |title=Loop Integrands for Scattering Amplitudes from the Riemann Sphere |journal=Physical Review Letters |volume=115 |issue=12 |pages=121603 |doi=10.1103/PhysRevLett.115.121603 |pmid=26430983 |bibcode=2015PhRvL.115l1603G |arxiv=1507.00321 |s2cid=36625491}}</ref> and can be defined on curved backgrounds.<ref>{{Cite journal |last1=Adamo |first1=Tim |last2=Casali |first2=Eduardo |last3=Skinner |first3=David |date=2015-02-01 |title=A worldsheet theory for supergravity |journal=Journal of High Energy Physics |language=en |volume=2015 |issue=2 |pages=116 |doi=10.1007/JHEP02(2015)116 |issn=1029-8479 |bibcode=2015JHEP...02..116A |arxiv=1409.5656 |s2cid=119234027}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)