Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ultraviolet astronomy
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Overview== {{Globalize|2=US|date=September 2024}} Ultraviolet [[Spectral line|line spectrum]] measurements ([[Astronomical spectroscopy|spectroscopy]]) are used to discern the chemical composition, densities, and temperatures of the [[interstellar medium]], and the temperature and composition of hot young stars. UV observations can also provide essential information about the [[Galaxy formation and evolution|evolution of galaxies]]. They can be used to discern the presence of a hot [[white dwarf]] or [[main sequence]] companion in orbit around a cooler star.<ref name=Reimers1984/><ref name=Ortiz2016/> The ultraviolet [[universe]] looks quite different from the familiar [[star]]s and [[galaxy|galaxies]] seen in [[visible light]]. Most stars are actually relatively cool objects emitting much of their electromagnetic radiation in the visible or near-[[infrared]] part of the spectrum. Ultraviolet radiation is the signature of hotter objects, typically in the early and late stages of their [[stellar evolution|evolution]]. In the Earth's sky seen in ultraviolet light, most stars would fade in prominence. Some very young massive stars and some very old stars and galaxies, growing hotter and producing higher-energy radiation near their birth or death, would be visible. Clouds of gas and dust would block the vision in many directions along the [[Milky Way]]. Space-based solar observatories such as [[Solar Dynamics Observatory|SDO]] and [[Solar and Heliospheric Observatory|SOHO]] use ultraviolet telescopes (called [[Solar Dynamics Observatory#Atmospheric Imaging Assembly (AIA)|AIA]] and [[Extreme ultraviolet Imaging Telescope|EIT]], respectively) to view activity on the Sun and its [[solar corona|corona]]. Weather satellites such as the [[Geostationary Operational Environmental Satellite|GOES-R]] series also carry [[GOES-16#Sun-facing|telescopes]] for observing the Sun in ultraviolet. The [[Hubble Space Telescope]] and [[Far Ultraviolet Spectroscopic Explorer|FUSE]] have been the most recent major [[space telescope]]s to view the near and far UV [[Electromagnetic spectrum|spectrum]] of the sky, though other UV instruments have flown on smaller observatories such as [[GALEX]], as well as [[sounding rockets]] and the [[Space Shuttle]]. Pioneers in ultraviolet astronomy include [[George Robert Carruthers]], [[Robert Wilson (astronomer)|Robert Wilson]], and [[Charles Stuart Bowyer]]. [[File:PIA20061 - Andromeda in High-Energy X-rays, Figure 1.jpg|thumb|center|500px|[[Andromeda Galaxy]] - in [[X-Ray astronomy|high-energy X-ray]] and ultraviolet light (released 5 January 2016).]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)