Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uncertainty principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Position–momentum== {{Main article|Introduction to quantum mechanics}} [[File:Sequential superposition of plane waves.gif|360px|right|thumb|The superposition of several plane waves to form a wave packet. This wave packet becomes increasingly localized with the addition of many waves. The Fourier transform is a mathematical operation that separates a wave packet into its individual plane waves. The waves shown here are [[real function|real]] for illustrative purposes only; in quantum mechanics the wave function is generally [[complex function|complex]].]] It is vital to illustrate how the principle applies to relatively intelligible physical situations since it is indiscernible on the macroscopic<ref>{{cite journal | last1=Jaeger|first1=Gregg|title=What in the (quantum) world is macroscopic?|journal=American Journal of Physics|date=September 2014 | volume=82|issue=9|pages=896–905|doi=10.1119/1.4878358|bibcode = 2014AmJPh..82..896J }}</ref> scales that humans experience. Two alternative frameworks for quantum physics offer different explanations for the uncertainty principle. The [[Schrödinger equation|wave mechanics]] picture of the uncertainty principle is more visually intuitive, but the more abstract [[matrix mechanics]] picture formulates it in a way that generalizes more easily. Mathematically, in wave mechanics, the uncertainty relation between position and momentum arises because the expressions of the wavefunction in the two corresponding [[orthonormal]] [[basis (linear algebra)|bases]] in [[Hilbert space]] are [[Fourier transforms]] of one another (i.e., position and momentum are [[conjugate variables]]). A nonzero function and its Fourier transform cannot both be sharply localized at the same time.<ref>See Appendix B in {{citation |title=Why photons cannot be sharply localized |first1=Iwo |last1=Bialynicki-Birula |first2=Zofia |last2=Bialynicka-Birula |journal=Physical Review A |date=2009 |volume=79 |issue=3 |pages=7–8|doi=10.1103/PhysRevA.79.032112 |arxiv=0903.3712 |bibcode=2009PhRvA..79c2112B |s2cid=55632217 }}</ref> A similar tradeoff between the variances of Fourier conjugates arises in all systems underlain by Fourier analysis, for example in sound waves: A pure tone is a [[Dirac delta function|sharp spike]] at a single frequency, while its Fourier transform gives the shape of the sound wave in the time domain, which is a completely delocalized sine wave. In quantum mechanics, the two key points are that the position of the particle takes the form of a matter wave, and momentum is its Fourier conjugate, assured by the [[Matter wave|de Broglie relation]] {{math|''p'' {{=}} ''ħk''}}, where {{mvar|k}} is the [[wavenumber]]. In [[matrix mechanics]], the [[mathematical formulation of quantum mechanics#Postulates of quantum mechanics|mathematical formulation of quantum mechanics]], any pair of non-[[commutator|commuting]] [[self-adjoint operator]]s representing [[observable]]s are subject to similar uncertainty limits. An eigenstate of an observable represents the state of the wavefunction for a certain measurement value (the eigenvalue). For example, if a measurement of an observable {{mvar|A}} is performed, then the system is in a particular eigenstate {{mvar|Ψ}} of that observable. However, the particular eigenstate of the observable {{mvar|A}} need not be an eigenstate of another observable {{mvar|B}}: If so, then it does not have a unique associated measurement for it, as the system is not in an eigenstate of that observable.<ref>{{Citation|author1=Claude Cohen-Tannoudji | author2=Bernard Diu | author3=Franck Laloë |title=Quantum mechanics|year=1996|publisher=Wiley|location=Wiley-Interscience | isbn=978-0-471-56952-7 | pages=231–233}}</ref> ===Visualization=== The uncertainty principle can be visualized using the position- and momentum-space wavefunctions for one spinless particle with mass in one dimension. The more localized the position-space wavefunction, the more likely the particle is to be found with the position coordinates in that region, and correspondingly the momentum-space wavefunction is less localized so the possible momentum components the particle could have are more widespread. Conversely, the more localized the momentum-space wavefunction, the more likely the particle is to be found with those values of momentum components in that region, and correspondingly the less localized the position-space wavefunction, so the position coordinates the particle could occupy are more widespread. These wavefunctions are [[Fourier transform]]s of each other: mathematically, the uncertainty principle expresses the relationship between conjugate variables in the transform. [[File:Quantum mechanics travelling wavefunctions wavelength.svg|center|thumb|502px|Position ''x'' and momentum ''p'' wavefunctions corresponding to quantum particles. The colour opacity of the particles corresponds to the [[probability density]] of finding the particle with position ''x'' or momentum component ''p''.<br/> '''Top:''' If wavelength ''λ'' is unknown, so are momentum ''p'', wave-vector ''k'' and energy ''E'' (de Broglie relations). As the particle is more localized in position space, Δ''x'' is smaller than for Δ''p<sub>x</sub>''.<br/> '''Bottom:''' If ''λ'' is known, so are ''p'', ''k'', and ''E''. As the particle is more localized in momentum space, Δ''p'' is smaller than for Δ''x''.]] {{Clear}} ===Wave mechanics interpretation=== {{Main article|Wave packet|Schrödinger equation}} {{multiple image | align = right | direction = vertical | footer = Propagation of [[matter wave|de Broglie waves]] in 1d—real part of the [[complex number|complex]] amplitude is blue, imaginary part is green. The probability (shown as the colour [[opacity (optics)|opacity]]) of finding the particle at a given point ''x'' is spread out like a waveform, there is no definite position of the particle. As the amplitude increases above zero the [[curvature]] reverses sign, so the amplitude begins to decrease again, and vice versa—the result is an alternating amplitude: a wave. | image1 = Propagation of a de broglie plane wave.svg | caption1 = [[Plane wave]] | width1 = 250 | image2 = Propagation of a de broglie wavepacket.svg | caption2 = [[Wave packet]] | width2 = 250 }} According to the [[Matter wave|de Broglie hypothesis]], every object in the universe is associated with a [[wave]]. Thus every object, from an elementary particle to atoms, molecules and on up to planets and beyond are subject to the uncertainty principle. The time-independent wave function of a single-moded plane wave of wavenumber ''k''<sub>0</sub> or momentum ''p''<sub>0</sub> is<ref>{{Citation | last = Hall | first = B. C. | title = Quantum Theory for Mathematicians | publisher = Springer | year = 2013 | pages = 60 | bibcode = 2013qtm..book.....H }}</ref> <math display="block">\psi(x) \propto e^{ik_0 x} = e^{ip_0 x/\hbar} ~.</math> The [[Born rule]] states that this should be interpreted as a [[probability density function|probability density amplitude function]] in the sense that the probability of finding the particle between ''a'' and ''b'' is <math display="block"> \operatorname P [a \leq X \leq b] = \int_a^b |\psi(x)|^2 \, \mathrm{d}x ~.</math> In the case of the single-mode plane wave, <math>|\psi(x)|^2</math> is ''1'' if <math>X=x</math> and ''0'' otherwise. In other words, the particle position is extremely uncertain in the sense that it could be essentially anywhere along the wave packet. On the other hand, consider a wave function that is a [[superposition principle|sum of many waves]], which we may write as <math display="block">\psi(x) \propto \sum_n A_n e^{i p_n x/\hbar}~, </math> where ''A''<sub>''n''</sub> represents the relative contribution of the mode ''p''<sub>''n''</sub> to the overall total. The figures to the right show how with the addition of many plane waves, the wave packet can become more localized. We may take this a step further to the [[continuum limit]], where the wave function is an [[integral]] over all possible modes <math display="block">\psi(x) = \frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^\infty \varphi(p) \cdot e^{i p x/\hbar} \, dp ~, </math> with <math>\varphi(p)</math> representing the amplitude of these modes and is called the wave function in [[momentum space]]. In mathematical terms, we say that <math>\varphi(p)</math> is the ''[[Fourier transform]]'' of <math>\psi(x)</math> and that ''x'' and ''p'' are [[conjugate variables]]. Adding together all of these plane waves comes at a cost, namely the momentum has become less precise, having become a mixture of waves of many different momenta.<ref name="L&L">{{cite book |first1=Lev Davidovich |last1=Landau|authorlink1=Lev Landau|first2=Evgeny Mikhailovich|last2=Lifshitz|authorlink2= Evgeny Lifshitz|year=1977 |title=Quantum Mechanics: Non-Relativistic Theory |edition=3rd |volume=3 |publisher=[[Pergamon Press]] |isbn=978-0-08-020940-1|url=https://archive.org/details/QuantumMechanics_104}}</ref> One way to quantify the precision of the position and momentum is the [[standard deviation]] ''σ''. Since <math>|\psi(x)|^2</math> is a probability density function for position, we calculate its standard deviation. The precision of the position is improved, i.e. reduced ''σ''<sub>''x''</sub>, by using many plane waves, thereby weakening the precision of the momentum, i.e. increased ''σ''<sub>''p''</sub>. Another way of stating this is that ''σ''<sub>''x''</sub> and ''σ''<sub>''p''</sub> have an [[inverse relationship]] or are at least bounded from below. This is the uncertainty principle, the exact limit of which is the Kennard bound. ===Proof of the Kennard inequality using wave mechanics=== We are interested in the [[variance]]s of position and momentum, defined as <math display="block">\sigma_x^2 = \int_{-\infty}^\infty x^2 \cdot |\psi(x)|^2 \, dx - \left( \int_{-\infty}^\infty x \cdot |\psi(x)|^2 \, dx \right)^2</math> <math display="block">\sigma_p^2 = \int_{-\infty}^\infty p^2 \cdot |\varphi(p)|^2 \, dp - \left( \int_{-\infty}^\infty p \cdot |\varphi(p)|^2 \, dp \right)^2~.</math> [[Without loss of generality]], we will assume that the [[expected value|means]] vanish, which just amounts to a shift of the origin of our coordinates. (A more general proof that does not make this assumption is given below.) This gives us the simpler form <math display="block">\sigma_x^2 = \int_{-\infty}^\infty x^2 \cdot |\psi(x)|^2 \, dx</math> <math display="block">\sigma_p^2 = \int_{-\infty}^\infty p^2 \cdot |\varphi(p)|^2 \, dp~.</math> The function <math>f(x) = x \cdot \psi(x)</math> can be interpreted as a [[vector space|vector]] in a [[function space]]. We can define an [[inner product]] for a pair of functions ''u''(''x'') and ''v''(''x'') in this vector space: <math display="block">\langle u \mid v \rangle = \int_{-\infty}^\infty u^*(x) \cdot v(x) \, dx,</math> where the asterisk denotes the [[complex conjugate]]. With this inner product defined, we note that the variance for position can be written as <math display="block">\sigma_x^2 = \int_{-\infty}^\infty |f(x)|^2 \, dx = \langle f \mid f \rangle ~.</math> We can repeat this for momentum by interpreting the function <math>\tilde{g}(p)=p \cdot \varphi(p)</math> as a vector, but we can also take advantage of the fact that <math>\psi(x)</math> and <math>\varphi(p)</math> are Fourier transforms of each other. We evaluate the inverse Fourier transform through [[integration by parts]]: <math display="block">\begin{align} g(x) &= \frac{1}{\sqrt{2 \pi \hbar}} \cdot \int_{-\infty}^\infty \tilde{g}(p) \cdot e^{ipx/\hbar} \, dp \\ &= \frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^\infty p \cdot \varphi(p) \cdot e^{ipx/\hbar} \, dp \\ &= \frac{1}{2 \pi \hbar} \int_{-\infty}^\infty \left[ p \cdot \int_{-\infty}^\infty \psi(\chi) e^{-ip\chi/\hbar} \, d\chi \right] \cdot e^{ipx/\hbar} \, dp \\ &= \frac{i}{2 \pi} \int_{-\infty}^\infty \left[ \cancel{ \left. \psi(\chi) e^{-ip\chi/\hbar} \right|_{-\infty}^\infty } - \int_{-\infty}^\infty \frac{d\psi(\chi)}{d\chi} e^{-ip\chi/\hbar} \, d\chi \right] \cdot e^{ipx/\hbar} \, dp \\ &= -i \int_{-\infty}^\infty \frac{d\psi(\chi)}{d\chi} \left[ \frac{1}{2 \pi}\int_{-\infty}^\infty \, e^{ip(x - \chi)/\hbar} \, dp \right]\, d\chi\\ &= -i \int_{-\infty}^\infty \frac{d\psi(\chi)}{d\chi} \left[ \delta\left(\frac{x - \chi }{\hbar}\right) \right]\, d\chi\\ &= -i \hbar \int_{-\infty}^\infty \frac{d\psi(\chi)}{d\chi} \left[ \delta\left(x - \chi \right) \right]\, d\chi\\ &= -i \hbar \frac{d\psi(x)}{dx} \\ &= \left( -i \hbar \frac{d}{dx} \right) \cdot \psi(x) , \end{align}</math> where <math>v=\frac{\hbar}{-ip}e^{-ip\chi/\hbar}</math> in the integration by parts, the cancelled term vanishes because the wave function vanishes at both infinities and <math>|e^{-ip\chi/\hbar}|=1</math>, and then use the [[Dirac delta function#History|Dirac delta function]] which is valid because <math>\dfrac{d\psi(\chi)}{d\chi}</math> does not depend on ''p'' . The term <math display="inline">-i \hbar \frac{d}{dx}</math> is called the [[momentum operator]] in position space. Applying [[Plancherel theorem|Plancherel's theorem]], we see that the variance for momentum can be written as <math display="block">\sigma_p^2 = \int_{-\infty}^\infty |\tilde{g}(p)|^2 \, dp = \int_{-\infty}^\infty |g(x)|^2 \, dx = \langle g \mid g \rangle.</math> The [[Cauchy–Schwarz inequality]] asserts that <math display="block">\sigma_x^2 \sigma_p^2 = \langle f \mid f \rangle \cdot \langle g \mid g \rangle \ge |\langle f \mid g \rangle|^2 ~.</math> The [[modulus squared]] of any complex number ''z'' can be expressed as <math display="block">|z|^{2} = \Big(\text{Re}(z)\Big)^{2}+\Big(\text{Im}(z)\Big)^{2} \geq \Big(\text{Im}(z)\Big)^{2} = \left(\frac{z-z^{\ast}}{2i}\right)^{2}. </math> we let <math>z=\langle f|g\rangle</math> and <math>z^{*}=\langle g\mid f\rangle</math> and substitute these into the equation above to get <math display="block">|\langle f\mid g\rangle|^2 \geq \left(\frac{\langle f\mid g\rangle-\langle g \mid f \rangle}{2i}\right)^2 ~.</math> All that remains is to evaluate these inner products. <math display="block">\begin{align} \langle f\mid g\rangle-\langle g\mid f\rangle &= \int_{-\infty}^\infty \psi^*(x) \, x \cdot \left(-i \hbar \frac{d}{dx}\right) \, \psi(x) \, dx - \int_{-\infty}^\infty \psi^*(x) \, \left(-i \hbar \frac{d}{dx}\right) \cdot x \, \psi(x) \, dx \\ &= i \hbar \cdot \int_{-\infty}^\infty \psi^*(x) \left[ \left(-x \cdot \frac{d\psi(x)}{dx}\right) + \frac{d(x \psi(x))}{dx} \right] \, dx \\ &= i \hbar \cdot \int_{-\infty}^\infty \psi^*(x) \left[ \left(-x \cdot \frac{d\psi(x)}{dx}\right) + \psi(x) + \left(x \cdot \frac{d\psi(x)}{dx}\right)\right] \, dx \\ &= i \hbar \cdot \int_{-\infty}^\infty \psi^*(x) \psi(x) \, dx \\ &= i \hbar \cdot \int_{-\infty}^\infty |\psi(x)|^2 \, dx \\ &= i \hbar \end{align}</math> Plugging this into the above inequalities, we get <math display="block">\sigma_x^2 \sigma_p^2 \ge |\langle f \mid g \rangle|^2 \ge \left(\frac{\langle f\mid g\rangle-\langle g\mid f\rangle}{2i}\right)^2 = \left(\frac{i \hbar}{2 i}\right)^2 = \frac{\hbar^2}{4}</math> and taking the square root <math display="block">\sigma_x \sigma_p \ge \frac{\hbar}{2}~.</math> with equality if and only if ''p'' and ''x'' are linearly dependent. Note that the only ''physics'' involved in this proof was that <math>\psi(x)</math> and <math>\varphi(p)</math> are wave functions for position and momentum, which are Fourier transforms of each other. A similar result would hold for ''any'' pair of conjugate variables. ===Matrix mechanics interpretation=== {{Main article|Matrix mechanics}} In matrix mechanics, observables such as position and momentum are represented by self-adjoint operators.<ref name="L&L"/> When considering pairs of observables, an important quantity is the ''[[commutator]]''. For a pair of operators {{mvar|Â}} and <math>\hat{B}</math>, one defines their commutator as <math display="block">[\hat{A},\hat{B}]=\hat{A}\hat{B}-\hat{B}\hat{A}.</math> In the case of position and momentum, the commutator is the [[canonical commutation relation]] <math display="block">[\hat{x},\hat{p}]=i \hbar.</math> The physical meaning of the non-commutativity can be understood by considering the effect of the commutator on position and momentum [[eigenstate]]s. Let <math>|\psi\rangle</math> be a right eigenstate of position with a constant eigenvalue {{math|''x''<sub>0</sub>}}. By definition, this means that <math>\hat{x}|\psi\rangle = x_0 |\psi\rangle.</math> Applying the commutator to <math>|\psi\rangle</math> yields <math display="block">[\hat{x},\hat{p}] | \psi \rangle = (\hat{x}\hat{p}-\hat{p}\hat{x}) | \psi \rangle = (\hat{x} - x_0 \hat{I}) \hat{p} \, | \psi \rangle = i \hbar | \psi \rangle,</math> where {{mvar|Î}} is the [[identity matrix|identity operator]]. Suppose, for the sake of [[proof by contradiction]], that <math>|\psi\rangle</math> is also a right eigenstate of momentum, with constant eigenvalue {{mvar|''p''<sub>0</sub>}}. If this were true, then one could write <math display="block">(\hat{x} - x_0 \hat{I}) \hat{p} \, | \psi \rangle = (\hat{x} - x_0 \hat{I}) p_0 \, | \psi \rangle = (x_0 \hat{I} - x_0 \hat{I}) p_0 \, | \psi \rangle=0.</math> On the other hand, the above canonical commutation relation requires that <math display="block">[\hat{x},\hat{p}] | \psi \rangle=i \hbar | \psi \rangle \ne 0.</math> This implies that no quantum state can simultaneously be both a position and a momentum eigenstate. When a state is measured, it is projected onto an eigenstate in the basis of the relevant observable. For example, if a particle's position is measured, then the state amounts to a position eigenstate. This means that the state is ''not'' a momentum eigenstate, however, but rather it can be represented as a sum of multiple momentum basis eigenstates. In other words, the momentum must be less precise. This precision may be quantified by the standard deviations, <math display="block">\sigma_x=\sqrt{\langle \hat{x}^2 \rangle-\langle \hat{x}\rangle^2}</math> <math display="block">\sigma_p=\sqrt{\langle \hat{p}^2 \rangle-\langle \hat{p}\rangle^2}.</math> As in the wave mechanics interpretation above, one sees a tradeoff between the respective precisions of the two, quantified by the uncertainty principle. ===Quantum harmonic oscillator stationary states=== {{Main article|Quantum harmonic oscillator|Stationary state}} Consider a one-dimensional quantum harmonic oscillator. It is possible to express the position and momentum operators in terms of the [[creation and annihilation operators]]: <math display="block">\hat x = \sqrt{\frac{\hbar}{2m\omega}}(a+a^\dagger)</math> <math display="block">\hat p = i\sqrt{\frac{m \omega\hbar}{2}}(a^\dagger-a).</math> Using the standard rules for creation and annihilation operators on the energy eigenstates, <math display="block">a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle</math> <math display="block">a|n\rangle=\sqrt{n}|n-1\rangle, </math> the variances may be computed directly, <math display="block">\sigma_x^2 = \frac{\hbar}{m\omega} \left( n+\frac{1}{2}\right)</math> <math display="block">\sigma_p^2 = \hbar m\omega \left( n+\frac{1}{2}\right)\, .</math> The product of these standard deviations is then <math display="block">\sigma_x \sigma_p = \hbar \left(n+\frac{1}{2}\right) \ge \frac{\hbar}{2}.~</math> In particular, the above Kennard bound<ref name="Kennard" /> is saturated for the [[ground state]] {{math|''n''{{=}}0}}, for which the probability density is just the [[normal distribution]]. === Quantum harmonic oscillators with Gaussian initial condition === {{multiple image | align = right | direction = vertical | footer = Position (blue) and momentum (red) probability densities for an initial Gaussian distribution. From top to bottom, the animations show the cases {{nowrap|1=Ω = ''ω''}}, {{nowrap|1=Ω = 2''ω''}}, and {{nowrap|1=Ω = ''ω''/2}}. Note the tradeoff between the widths of the distributions. | width1 = 360 | image1 = Position_and_momentum_of_a_Gaussian_initial_state_for_a_QHO,_balanced.gif | width2 = 360 | image2 = Position_and_momentum_of_a_Gaussian_initial_state_for_a_QHO,_narrow.gif | width3 = 360 | image3 = Position_and_momentum_of_a_Gaussian_initial_state_for_a_QHO,_wide.gif }} In a quantum harmonic oscillator of characteristic angular frequency ''ω'', place a state that is offset from the bottom of the potential by some displacement ''x''<sub>0</sub> as <math display="block">\psi(x)=\left(\frac{m \Omega}{\pi \hbar}\right)^{1/4} \exp{\left( -\frac{m \Omega (x-x_0)^2}{2\hbar}\right)},</math> where Ω describes the width of the initial state but need not be the same as ''ω''. Through integration over the [[Propagator#Basic examples: propagator of free particle and harmonic oscillator|propagator]], we can solve for the {{Not a typo|full time}}-dependent solution. After many cancelations, the probability densities reduce to <math display="block">|\Psi(x,t)|^2 \sim \mathcal{N}\left( x_0 \cos{(\omega t)} , \frac{\hbar}{2 m \Omega} \left( \cos^2(\omega t) + \frac{\Omega^2}{\omega^2} \sin^2{(\omega t)} \right)\right)</math> <math display="block">|\Phi(p,t)|^2 \sim \mathcal{N}\left( -m x_0 \omega \sin(\omega t), \frac{\hbar m \Omega}{2} \left( \cos^2{(\omega t)} + \frac{\omega^2}{\Omega^2} \sin^2{(\omega t)} \right)\right),</math> where we have used the notation <math>\mathcal{N}(\mu, \sigma^2)</math> to denote a normal distribution of mean ''μ'' and variance ''σ''<sup>2</sup>. Copying the variances above and applying [[list of trigonometric identities|trigonometric identities]], we can write the product of the standard deviations as <math display="block">\begin{align} \sigma_x \sigma_p&=\frac{\hbar}{2}\sqrt{\left( \cos^2{(\omega t)} + \frac{\Omega^2}{\omega^2} \sin^2{(\omega t)} \right)\left( \cos^2{(\omega t)} + \frac{\omega^2}{\Omega^2} \sin^2{(\omega t)} \right)} \\ &= \frac{\hbar}{4}\sqrt{3+\frac{1}{2}\left(\frac{\Omega^2}{\omega^2}+\frac{\omega^2}{\Omega^2}\right)-\left(\frac{1}{2}\left(\frac{\Omega^2}{\omega^2}+\frac{\omega^2}{\Omega^2}\right)-1\right) \cos{(4 \omega t)}} \end{align}</math> From the relations <math display="block">\frac{\Omega^2}{\omega^2}+\frac{\omega^2}{\Omega^2} \ge 2, \quad |\cos(4 \omega t)| \le 1,</math> we can conclude the following (the right most equality holds only when {{nowrap|1=Ω = ''ω''}}): <math display="block">\sigma_x \sigma_p \ge \frac{\hbar}{4}\sqrt{3+\frac{1}{2} \left(\frac{\Omega^2}{\omega^2}+\frac{\omega^2}{\Omega^2}\right)-\left(\frac{1}{2} \left(\frac{\Omega^2}{\omega^2}+\frac{\omega^2}{\Omega^2}\right)-1\right)} = \frac{\hbar}{2}. </math> ===Coherent states=== {{Main article|Coherent state}} A coherent state is a right eigenstate of the [[annihilation operator]], <math display="block">\hat{a}|\alpha\rangle=\alpha|\alpha\rangle,</math> which may be represented in terms of [[Fock state]]s as <math display="block">|\alpha\rangle =e^{-{|\alpha|^2\over2}} \sum_{n=0}^\infty {\alpha^n \over \sqrt{n!}}|n\rangle</math> In the picture where the coherent state is a massive particle in a quantum harmonic oscillator, the position and momentum operators may be expressed in terms of the annihilation operators in the same formulas above and used to calculate the variances, <math display="block">\sigma_x^2 = \frac{\hbar}{2 m \omega},</math> <math display="block">\sigma_p^2 = \frac{\hbar m \omega}{2}.</math> Therefore, every coherent state saturates the Kennard bound <math display="block">\sigma_x \sigma_p = \sqrt{\frac{\hbar}{2 m \omega}} \, \sqrt{\frac{\hbar m \omega}{2}} = \frac{\hbar}{2}. </math> with position and momentum each contributing an amount <math display="inline">\sqrt{\hbar/2}</math> in a "balanced" way. Moreover, every [[squeezed coherent state]] also saturates the Kennard bound although the individual contributions of position and momentum need not be balanced in general. ===Particle in a box=== {{Main article|Particle in a box}} Consider a particle in a one-dimensional box of length <math>L</math>. The [[Particle in a box#Wavefunctions|eigenfunctions in position and momentum space]] are <math display="block">\psi_n(x,t) =\begin{cases} A \sin(k_n x)\mathrm{e}^{-\mathrm{i}\omega_n t}, & 0 < x < L,\\ 0, & \text{otherwise,} \end{cases}</math> and <math display="block">\varphi_n(p,t)=\sqrt{\frac{\pi L}{\hbar}}\,\,\frac{n\left(1-(-1)^ne^{-ikL} \right) e^{-i \omega_n t}}{\pi ^2 n^2-k^2 L^2},</math> where <math display="inline">\omega_n=\frac{\pi^2 \hbar n^2}{8 L^2 m}</math> and we have used the [[de Broglie relation]] <math>p=\hbar k</math>. The variances of <math>x</math> and <math>p</math> can be calculated explicitly: <math display="block">\sigma_x^2=\frac{L^2}{12}\left(1-\frac{6}{n^2\pi^2}\right)</math> <math display="block">\sigma_p^2=\left(\frac{\hbar n\pi}{L}\right)^2. </math> The product of the standard deviations is therefore <math display="block">\sigma_x \sigma_p = \frac{\hbar}{2} \sqrt{\frac{n^2\pi^2}{3}-2}.</math> For all <math>n=1, \, 2, \, 3,\, \ldots</math>, the quantity <math display="inline">\sqrt{\frac{n^2\pi^2}{3}-2}</math> is greater than 1, so the uncertainty principle is never violated. For numerical concreteness, the smallest value occurs when <math>n = 1</math>, in which case <math display="block">\sigma_x \sigma_p = \frac{\hbar}{2} \sqrt{\frac{\pi^2}{3}-2} \approx 0.568 \hbar > \frac{\hbar}{2}.</math> ===Constant momentum=== {{Main article|Wave packet}} [[File:Guassian Dispersion.gif|360 px|thumb|right|Position space probability density of an initially Gaussian state moving at minimally uncertain, constant momentum in free space]] Assume a particle initially has a [[momentum space]] wave function described by a normal distribution around some constant momentum ''p''<sub>0</sub> according to <math display="block">\varphi(p) = \left(\frac{x_0}{\hbar \sqrt{\pi}} \right)^{1/2} \exp\left(\frac{-x_0^2 (p-p_0)^2}{2\hbar^2}\right),</math> where we have introduced a reference scale <math display="inline">x_0=\sqrt{\hbar/m\omega_0}</math>, with <math>\omega_0>0</math> describing the width of the distribution—cf. [[nondimensionalization]]. If the state is allowed to evolve in free space, then the time-dependent momentum and position space wave functions are <math display="block">\Phi(p,t) = \left(\frac{x_0}{\hbar \sqrt{\pi}} \right)^{1/2} \exp\left(\frac{-x_0^2 (p-p_0)^2}{2\hbar^2}-\frac{ip^2 t}{2m\hbar}\right),</math> <math display="block">\Psi(x,t) = \left(\frac{1}{x_0 \sqrt{\pi}} \right)^{1/2} \frac{e^{-x_0^2 p_0^2 /2\hbar^2}}{\sqrt{1+i\omega_0 t}} \, \exp\left(-\frac{(x-ix_0^2 p_0/\hbar)^2}{2x_0^2 (1+i\omega_0 t)}\right).</math> Since <math> \langle p(t) \rangle = p_0</math> and <math>\sigma_p(t) = \hbar /(\sqrt{2}x_0)</math>, this can be interpreted as a particle moving along with constant momentum at arbitrarily high precision. On the other hand, the standard deviation of the position is <math display="block">\sigma_x = \frac{x_0}{\sqrt{2}} \sqrt{1+\omega_0^2 t^2}</math> such that the uncertainty product can only increase with time as <math display="block">\sigma_x(t) \sigma_p(t) = \frac{\hbar}{2} \sqrt{1+\omega_0^2 t^2}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)