Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uniform boundedness principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Theorem== {{math theorem|name=Uniform Boundedness Principle|math_statement= Let <math>X</math> be a [[Banach space]], <math>Y</math> a [[normed vector space]] and <math>B(X,Y)</math> the space of all [[continuous linear operators]] from <math>X</math> into <math>Y</math>. Suppose that <math>F</math> is a collection of continuous linear operators from <math>X</math> to <math>Y.</math> If, for every <math>x \in X</math>, <math display=block>\sup_{T \in F} \|T(x)\|_Y < \infty,</math> then <math display=block>\sup_{T \in F} \|T\|_{B(X,Y)} < \infty.</math> }} The first inequality (that is, <math display=inline>\sup_{T \in F} \|T(x)\| < \infty</math> for all <math>x</math>) states that the functionals in <math>F</math> are pointwise bounded while the second states that they are uniformly bounded. The second supremum always equals <math display=block>\sup_{T \in F} \|T\|_{B(X,Y)} = \sup_{\stackrel{T \in F}{\|x\| \leq 1}} \|T(x)\|_Y = \sup_{T \in F} \sup_{\|x\| \leq 1} \|T(x)\|_Y</math> and if <math>X</math> is not the trivial vector space (or if the supremum is taken over <math>[0, \infty]</math> rather than <math>[-\infty, \infty]</math>) then closed unit ball can be replaced with the unit sphere <math display=block>\sup_{T \in F} \|T\|_{B(X,Y)} = \sup_{\stackrel{T \in F,}{\|x\| = 1}} \|T(x)\|_Y.</math> The completeness of the Banach space <math>X</math> enables the following short proof, using the [[Baire category theorem]]. {{math proof | proof = Suppose <math>X</math> is a Banach space and that for every <math>x \in X,</math> <math display=block>\sup_{T \in F} \|T(x)\|_Y < \infty.</math> For every integer <math>n \in \N,</math> let <math display=block>X_n = \left\{x \in X \ : \ \sup_{T \in F} \|T (x)\|_Y \leq n \right\}.</math> Each set <math>X_n</math> is a [[closed set]] and by the assumption, <math display=block>\bigcup_{n \in \N} X_n = X \neq \varnothing.</math> By the [[Baire category theorem]] for the non-empty [[complete metric space]] <math>X,</math> there exists some <math>m \in \N</math> such that <math>X_m</math> has non-empty [[Interior (topology)|interior]]; that is, there exist <math>x_0 \in X_m</math> and <math>\varepsilon > 0</math> such that <math display=block>\overline{B_\varepsilon (x_0)} ~:=~ \left\{x \in X \,:\, \|x - x_0\| \leq \varepsilon \right\} ~\subseteq~ X_m.</math> Let <math>u \in X</math> with <math>\|u\| \leq 1</math> and <math>T \in F.</math> Then: <math display=block>\begin{align} \|T(u)\|_Y &= \varepsilon^{-1}\left\|T\left(x_0 + \varepsilon u\right) - T\left(x_0\right)\right\|_Y & [\text{by linearity of } T ] \\ &\leq \varepsilon^{-1}\left(\left\| T (x_0 + \varepsilon u) \right\|_Y + \left\|T(x_0)\right\|_Y \right ) \\ &\leq \varepsilon^{-1}(m + m). & [ \text{since } \ x_0 + \varepsilon u, \ x_0 \in X_m ] \\ \end{align}</math> Taking the supremum over <math>u</math> in the unit ball of <math>X</math> and over <math>T \in F</math> it follows that <math display=block>\sup_{T \in F} \|T\|_{B(X,Y)} ~\leq~ 2 \varepsilon^{-1} m ~ < ~ \infty.</math> }} There are also simple proofs not using the Baire theorem {{harv|Sokal|2011}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)