Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Viterbi algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== History == The Viterbi algorithm is named after [[Andrew Viterbi]], who proposed it in 1967 as a decoding algorithm for [[Convolution code|convolutional codes]] over noisy digital communication links.<ref>[https://arxiv.org/abs/cs/0504020v2 29 Apr 2005, G. David Forney Jr: The Viterbi Algorithm: A Personal History]</ref> It has, however, a history of [[multiple invention]], with at least seven independent discoveries, including those by Viterbi, [[Needleman–Wunsch algorithm|Needleman and Wunsch]], and [[Wagner–Fischer algorithm|Wagner and Fischer]].<ref name="slp">{{cite book |author1=Daniel Jurafsky |author2=James H. Martin |title=Speech and Language Processing |publisher=Pearson Education International |page=246}}</ref><!-- Jurafsky and Martin specifically refer to the papers that presented the Needleman–Wunsch and Wagner–Fischer algorithms, hence the wikilinks to those--> It was introduced to [[natural language processing]] as a method of [[part-of-speech tagging]] as early as 1987. ''Viterbi path'' and ''Viterbi algorithm'' have become standard terms for the application of dynamic programming algorithms to maximization problems involving probabilities.<ref name="slp" /> For example, in statistical parsing a dynamic programming algorithm can be used to discover the single most likely context-free derivation (parse) of a string, which is commonly called the "Viterbi parse".<ref>{{Cite conference | doi = 10.3115/1220355.1220379| title = Efficient parsing of highly ambiguous context-free grammars with bit vectors| conference = Proc. 20th Int'l Conf. on Computational Linguistics (COLING)| pages = <!--162-->| year = 2004| last1 = Schmid | first1 = Helmut| url = http://www.aclweb.org/anthology/C/C04/C04-1024.pdf| doi-access = free}}</ref><ref>{{Cite conference| doi = 10.3115/1073445.1073461| title = A* parsing: fast exact Viterbi parse selection| conference = Proc. 2003 Conf. of the North American Chapter of the Association for Computational Linguistics on Human Language Technology (NAACL)| pages = 40–47| year = 2003| last1 = Klein | first1 = Dan| last2 = Manning | first2 = Christopher D.| url = http://ilpubs.stanford.edu:8090/532/1/2002-16.pdf| doi-access = free}}</ref><ref>{{Cite journal | doi = 10.1093/nar/gkl200| title = AUGUSTUS: Ab initio prediction of alternative transcripts| journal = Nucleic Acids Research| volume = 34| issue = Web Server issue| pages = W435–W439| year = 2006| last1 = Stanke | first1 = M.| last2 = Keller | first2 = O.| last3 = Gunduz | first3 = I.| last4 = Hayes | first4 = A.| last5 = Waack | first5 = S.| last6 = Morgenstern | first6 = B. | pmid=16845043 | pmc=1538822}}</ref> Another application is in [[Optical motion tracking|target tracking]], where the track is computed that assigns a maximum likelihood to a sequence of observations.<ref>{{cite conference |author=Quach, T.; Farooq, M. |chapter=Maximum Likelihood Track Formation with the Viterbi Algorithm |title=Proceedings of 33rd IEEE Conference on Decision and Control |date=1994 |volume=1 |pages=271–276|doi=10.1109/CDC.1994.410918}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)