Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weierstrass elliptic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Motivation == A [[Cubic_form|cubic]] of the form <math>C_{g_2,g_3}^\mathbb{C}=\{(x,y)\in\mathbb{C}^2:y^2=4x^3-g_2x-g_3\} </math>, where <math>g_2,g_3\in\mathbb{C}</math> are complex numbers with <math>g_2^3-27g_3^2\neq0</math>, cannot be [[Rational_variety|rationally parameterized]].<ref name=":5" /> Yet one still wants to find a way to parameterize it. For the [[quadric]] <math>K=\left\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\right\}</math>; the [[unit circle]], there exists a (non-rational) parameterization using the sine function and its derivative the cosine function: <math display="block">\psi:\mathbb{R}/2\pi\mathbb{Z}\to K, \quad t\mapsto(\sin t,\cos t).</math> Because of the periodicity of the sine and cosine <math>\mathbb{R}/2\pi\mathbb{Z}</math> is chosen to be the domain, so the function is bijective. In a similar way one can get a parameterization of <math>C_{g_2,g_3}^\mathbb{C} </math> by means of the doubly periodic <math>\wp </math>-function (see in the section "Relation to elliptic curves"). This parameterization has the domain <math>\mathbb{C}/\Lambda </math>, which is topologically equivalent to a [[torus]].<ref>{{citation|surname1=Rolf Busam| title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin|at=p. 259| isbn=978-3-540-32058-6|date=2006|language=German}}</ref> There is another analogy to the trigonometric functions. Consider the integral function <math display="block">a(x)=\int_0^x\frac{dy}{\sqrt{1-y^2}} .</math> It can be simplified by substituting <math>y=\sin t </math> and <math>s=\arcsin x </math>: <math display="block">a(x)=\int_0^s dt = s = \arcsin x .</math> That means <math>a^{-1}(x) = \sin x </math>. So the sine function is an inverse function of an integral function.<ref>{{citation| surname1=Jeremy Gray|title=Real and the complex: a history of analysis in the 19th century|publication-place=Cham|at=p. 71| isbn=978-3-319-23715-2|date=2015|language=German}}</ref> Elliptic functions are the inverse functions of [[elliptic integral]]s. In particular, let: <math display="block">u(z)=\int_z^\infin\frac{ds}{\sqrt{4s^3-g_2s-g_3}} .</math> Then the extension of <math>u^{-1} </math> to the complex plane equals the <math>\wp </math>-function.<ref>{{citation|surname1=Rolf Busam|title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin|at=p. 294|isbn=978-3-540-32058-6|date=2006|language=German}}</ref> This invertibility is used in [[complex analysis]] to provide a solution to certain [[Nonlinear_system#Nonlinear_differential_equations|nonlinear differential equations]] satisfying the [[Painlevé property]], i.e., those equations that admit [[Zeros and poles|poles]] as their only [[Movable_singularity|movable singularities]].<ref>{{cite book | last=Ablowitz | first=Mark J. | last2=Fokas | first2=Athanassios S. | title=Complex Variables: Introduction and Applications | publisher=Cambridge University Press | date=2003 | isbn=978-0-521-53429-1 | doi=10.1017/cbo9780511791246|page=185}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)