Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weyl tensor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== {{See also|Ricci decomposition}} The Weyl tensor can be obtained from the full curvature tensor by subtracting out various traces. This is most easily done by writing the Riemann tensor as a (0,4) valence tensor (by contracting with the metric). The (0,4) valence Weyl tensor is then {{Harv|Petersen|2006|p=92}} :<math>C = R - \frac{1}{n-2}\left(\mathrm{Ric} - \frac{s}{n}g\right) {~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~} g - \frac{s}{2n(n - 1)}g {~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~} g</math> where ''n'' is the dimension of the manifold, ''g'' is the metric, ''R'' is the Riemann tensor, ''Ric'' is the [[Ricci tensor]], ''s'' is the [[scalar curvature]], and <math>h {~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~} k</math> denotes the [[Kulkarni–Nomizu product]] of two symmetric (0,2) tensors: :<math>\begin{align} (h {~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~} k)\left(v_1, v_2, v_3, v_4\right) =\quad &h\left(v_1, v_3\right)k\left(v_2, v_4\right) + h\left(v_2, v_4\right)k\left(v_1, v_3\right) \\ {}-{} &h\left(v_1, v_4\right)k\left(v_2, v_3\right) - h\left(v_2, v_3\right)k\left(v_1, v_4\right) \end{align}</math> In tensor component notation, this can be written as :<math>\begin{align} C_{ik\ell m} = R_{ik\ell m} +{} &\frac{1}{n - 2} \left(R_{im}g_{k\ell} - R_{i\ell}g_{km} + R_{k\ell}g_{im} - R_{km}g_{i\ell} \right) \\ {}+{} &\frac{1}{(n - 1)(n - 2)} R \left(g_{i\ell}g_{km} - g_{im}g_{k\ell} \right).\ \end{align}</math> The ordinary (1,3) valent Weyl tensor is then given by contracting the above with the inverse of the metric. The decomposition ({{EquationNote|1}}) expresses the Riemann tensor as an [[orthogonal]] [[direct sum of vector bundles|direct sum]], in the sense that :<math>|R|^2 = |C|^2 + \left|\frac{1}{n - 2}\left(\mathrm{Ric} - \frac{s}{n}g\right) {~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~} g\right|^2 + \left|\frac{s}{2n(n - 1)}g {~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~} g\right|^2.</math> This decomposition, known as the [[Ricci decomposition]], expresses the Riemann curvature tensor into its [[irreducible representation|irreducible]] components under the action of the [[orthogonal group]].{{sfn|Singer|Thorpe|1969}} In dimension 4, the Weyl tensor further decomposes into invariant factors for the action of the [[special orthogonal group]], the self-dual and antiself-dual parts ''C''<sup>+</sup> and ''C''<sup>−</sup>. The Weyl tensor can also be expressed using the [[Schouten tensor]], which is a trace-adjusted multiple of the Ricci tensor, :<math>P = \frac{1}{n - 2}\left(\mathrm{Ric} - \frac{s}{2(n-1)}g\right).</math> Then :<math>C = R - P {~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~} g.</math> In indices,<ref>{{Harvnb|Grøn|Hervik|2007|loc=p. 490}}</ref> :<math>C_{abcd} = R_{abcd} - \frac{2}{n - 2}\left(g_{a[c}R_{d]b} - g_{b[c}R_{d]a}\right) + \frac{2}{(n - 1)(n - 2)}R~g_{a[c}g_{d]b}</math> where <math>R_{abcd}</math> is the Riemann tensor, <math>R_{ab}</math> is the Ricci tensor, <math>R</math> is the Ricci scalar (the scalar curvature) and brackets around indices refers to the [[Antisymmetric tensor|antisymmetric part]]. Equivalently, :<math>{C_{ab}}^{cd} = {R_{ab}}^{cd} - 4S_{[a}^{[c}\delta_{b]}^{d]}</math> where ''S'' denotes the [[Schouten tensor]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)