Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Woodbury matrix identity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Discussion == To prove this result, we will start by proving a simpler one. Replacing ''A'' and ''C'' with the [[identity matrix]] ''I'', we obtain another identity which is a bit simpler: <math display="block"> \left(I + UV \right)^{-1} = I - U \left(I + VU \right)^{-1} V. </math> To recover the original equation from this ''reduced identity'', replace <math>U</math> by <math>A^{-1}U</math> and <math>V</math> by <math>CV</math>. This identity itself can be viewed as the combination of two simpler identities. We obtain the first identity from <math display="block"> I = (I + P)^{-1}(I + P) = (I + P)^{-1} + (I + P)^{-1}P,</math> thus, <math display="block"> (I + P)^{-1} = I-(I + P)^{-1}P,</math> and similarly <math display="block"> (I + P)^{-1} = I - P (I + P)^{-1}.</math> The second identity is the so-called '''push-through identity'''<ref name="HS"/> <math display="block"> (I + UV)^{-1} U = U (I + VU)^{-1} </math> that we obtain from <math display="block"> U(I + VU)=(I + UV)U</math> after multiplying by <math>(I + VU)^{-1}</math> on the right and by <math>(I + UV)^{-1}</math> on the left. Putting all together, <math display="block"> \left(I + UV \right)^{-1} = I - UV \left(I + UV \right)^{-1} = I - U \left(I + VU \right)^{-1} V. </math> where the first and second equality come from the first and second identity, respectively. === Special cases === When <math>V, U</math> are vectors, the identity reduces to the [[Sherman–Morrison formula]]. In the scalar case, the reduced version is simply <math display="block">\frac{1}{1 + uv} = 1 - \frac{uv}{1 + vu}.</math> ==== Inverse of a sum ==== If ''n'' = ''k'' and ''U'' = ''V'' = ''I''<sub>''n''</sub> is the identity matrix, then <math display="block">\begin{align} \left(A + B\right)^{-1} &= A^{-1} - A^{-1} \left(B^{-1} + A^{-1}\right)^{-1} A^{-1} \\[1ex] &= A^{-1} - A^{-1} \left(A B^{-1} + {I}\right)^{-1}. \end{align}</math> Continuing with the merging of the terms of the far right-hand side of the above equation results in [[Hua's identity]] <math display="block">\left({A} + {B}\right)^{-1} = {A}^{-1} - \left({A} + {A}{B}^{-1}{A}\right)^{-1}.</math> Another useful form of the same identity is <math display="block">\left({A} - {B}\right)^{-1} = {A}^{-1} + {A}^{-1}{B}\left({A} - {B}\right)^{-1},</math> which, unlike those above, is valid even if <math>B</math> is [[singular matrix|singular]], and has a recursive structure that yields <math display="block">\left({A} - {B}\right)^{-1} = \sum_{k=0}^{\infty} \left({A}^{-1}{B}\right)^k{A}^{-1}</math> if the [[spectral radius]] of <math>A^{-1}B</math> is less than one. That is, if the above sum converges then it is equal to <math>(A-B)^{-1}</math>. This form can be used in perturbative expansions where ''B'' is a perturbation of ''A''. === Variations === ==== Binomial inverse theorem ==== If ''A'', ''B'', ''U'', ''V'' are matrices of sizes ''n''×''n'', ''k''×''k'', ''n''×''k'', ''k''×''n'', respectively, then <math display="block"> \left(A + UBV\right)^{-1} = A^{-1} - A^{-1}UB\left(B+BVA^{-1}UB\right)^{-1} BVA^{-1} </math> provided ''A'' and ''B'' + ''BVA''<sup>−1</sup>''UB'' are nonsingular. Nonsingularity of the latter requires that ''B''<sup>−1</sup> exist since it equals {{nowrap|''B''(''I'' + ''VA''<sup>−1</sup>''UB'')}} and the rank of the latter cannot exceed the rank of ''B''.<ref name=HS>{{cite journal | last1 = Henderson | first1 = H. V. | last2 = Searle | first2 = S. R. | year = 1981 | title = On deriving the inverse of a sum of matrices | url = http://ecommons.cornell.edu/bitstream/1813/32749/1/BU-647-M.pdf| journal = SIAM Review | volume = 23 | issue = 1 | pages = 53–60 | doi = 10.1137/1023004 | jstor = 2029838 | hdl = 1813/32749 | hdl-access = free }}</ref> Since ''B'' is invertible, the two ''B'' terms flanking the parenthetical quantity inverse in the right-hand side can be replaced with {{nowrap|(''B''<sup>−1</sup>)<sup>−1</sup>,}} which results in the original Woodbury identity. A variation for when ''B'' is singular and possibly even non-square:<ref name=HS/> <math display="block">(A + UBV)^{-1} = A^{-1} - A^{-1}U(I + BVA^{-1}U)^{-1}BVA^{-1}.</math> Formulas also exist for certain cases in which ''A'' is singular.<ref>Kurt S. Riedel, "A Sherman–Morrison–Woodbury Identity for Rank Augmenting Matrices with Application to Centering", ''SIAM Journal on Matrix Analysis and Applications'', 13 (1992)659-662, {{doi|10.1137/0613040}} [http://math.nyu.edu/mfdd/riedel/ranksiam.ps preprint] {{MR|1152773}}</ref> ==== Pseudoinverse with positive semidefinite matrices ==== In general Woodbury's identity is not valid if one or more inverses are replaced by [[Moore–Penrose inverse|(Moore–Penrose) pseudoinverses]]. However, if <math>A</math> and <math>C</math> are [[Positive semidefinite matrices|positive semidefinite]], and <math>V = U^\mathrm H</math> (implying that <math>A + UCV</math> is itself positive semidefinite), then the following formula provides a generalization:<ref>{{cite book |last1=Bernstein |first1=Dennis S. |title=Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas |date=2018 |publisher=Princeton University Press |location=Princeton |isbn=9780691151205 |page=638 |edition=Revised and expanded}}</ref><ref>{{cite book |last1=Schott |first1=James R. |title=Matrix analysis for statistics |date=2017 |publisher=John Wiley & Sons, Inc. |location=Hoboken, New Jersey |isbn=9781119092483 |page=219 |edition=Third}}</ref> <math display="block"> \begin{align} \left(XX^\mathrm H + YY^\mathrm H\right)^+ &= \left(ZZ^\mathrm H\right)^+ + \left(I - YZ^+\right)^\mathrm H X^{+\mathrm H} E X^+ \left(I - YZ^+\right), \\ Z &= \left(I - XX^+\right) Y, \\ E &= I - X^+Y \left(I - Z^+Z\right) F^{-1} \left(X^+Y\right)^\mathrm H, \\ F &= I + \left(I - Z^+Z\right) Y^\mathrm H \left(XX^\mathrm H\right)^+ Y \left(I - Z^+Z\right), \end{align} </math> where <math>A + UCU^\mathrm H</math> can be written as <math>XX^\mathrm H + YY^\mathrm H</math> because any positive semidefinite matrix is equal to <math>MM^\mathrm H</math> for some <math>M</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)