Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
X-linked recessive inheritance
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Patterns of inheritance == [[File:Haemophilia family tree.GIF|thumb|Patterns of X-linked recessive inheritance in a royal family]] In humans, inheritance of X-linked recessive traits follows a unique pattern made up of three points. * The first is that affected fathers cannot pass X-linked recessive traits to their sons because fathers give Y chromosomes to their sons. This means that males affected by an X-linked recessive disorder inherited the responsible X chromosome from their mothers. * Second, X-linked recessive traits are more commonly expressed in males than females.<ref>{{Cite book|date=8 July 2009|title=Understanding Genetics: A New York, Mid-Atlantic Guide for Patients and Health Professionals|url=https://www.ncbi.nlm.nih.gov/books/NBK115561/|access-date=9 June 2020|website=National Center for Biotechnology Information}}</ref> This is due to the fact that males possess only a single X chromosome, and therefore require only one mutated X in order to be affected. Women possess two X chromosomes, and thus must receive two of the mutated recessive X chromosomes (one from each parent). A popular example showing this pattern of inheritance is that of the descendants of Queen Victoria and the blood disease [[Haemophilia|hemophilia]].<ref>{{Cite web|date=2014-03-04|title=History of Bleeding Disorders|url=https://www.hemophilia.org/Bleeding-Disorders/History-of-Bleeding-Disorders|access-date=2020-06-09|website=National Hemophilia Foundation|language=en}}</ref> * The last pattern seen is that X-linked recessive traits tend to skip generations, meaning that an affected grandfather will not have an affected son, but could have an affected grandson through his daughter.<ref>{{Cite book|last=Pierce|first=Benjamin A.|title=Genetics: A Conceptual Approach|publisher=Macmillan Learning|year=2020|isbn=978-1-319-29714-5|pages=154β155}}</ref> Explained further, all daughters of an affected man will obtain his mutated X, and will then be either carriers or affected themselves depending on the mother. The resulting sons will either have a 50% chance of being affected (mother is carrier), or 100% chance (mother is affected). It is because of these percentages that we see males more commonly affected than females.{{cn|date=February 2024}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)