Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Zero divisor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == <!-- It was valid, but nobody uses specifically ZΓZ as a ring and hence, nobody cares about its zero divisors. In any way, generalized with the direct product example below. --> * In the [[Ring (mathematics)|ring]] [[modular arithmetic|<math>\mathbb{Z}/4\mathbb{Z}</math>]], the residue class <math>\overline{2}</math> is a zero divisor since <math>\overline{2} \times \overline{2}=\overline{4}=\overline{0}</math>. * The only zero divisor of the ring <math>\mathbb{Z}</math> of [[Integer#Algebraic properties|integers]] is <math>0</math>. * A [[nilpotent]] element of a nonzero ring is always a two-sided zero divisor. * An [[idempotent element (ring theory)|idempotent element]] <math>e\ne 1</math> of a ring is always a two-sided zero divisor, since <math>e(1-e)=0=(1-e)e</math>. * The [[matrix ring|ring of ''n'' Γ ''n'' matrices]] over a [[field (mathematics)|field]] has nonzero zero divisors if ''n'' β₯ 2. Examples of zero divisors in the ring of 2 Γ 2 [[matrix (mathematics)|matrices]] (over any nonzero ring) are shown here: <math display="block">\begin{pmatrix}1&1\\2&2\end{pmatrix}\begin{pmatrix}1&1\\-1&-1\end{pmatrix}=\begin{pmatrix}-2&1\\-2&1\end{pmatrix}\begin{pmatrix}1&1\\2&2\end{pmatrix}=\begin{pmatrix}0&0\\0&0\end{pmatrix} ,</math> <math display="block">\begin{pmatrix}1&0\\0&0\end{pmatrix}\begin{pmatrix}0&0\\0&1\end{pmatrix} =\begin{pmatrix}0&0\\0&1\end{pmatrix}\begin{pmatrix}1&0\\0&0\end{pmatrix} =\begin{pmatrix}0&0\\0&0\end{pmatrix}.</math> * A [[product of rings|direct product]] of two or more nonzero rings always has nonzero zero divisors. For example, in <math>R_1 \times R_2</math> with each <math>R_i</math> nonzero, <math>(1,0)(0,1) = (0,0)</math>, so <math>(1,0)</math> is a zero divisor. * Let <math>K</math> be a field and <math>G</math> be a [[group (mathematics)|group]]. Suppose that <math>G</math> has an element <math>g</math> of finite [[order (group theory)|order]] <math>n > 1</math>. Then in the [[group ring]] <math>K[G]</math> one has <math>(1-g)(1+g+ \cdots +g^{n-1})=1-g^{n}=0</math>, with neither factor being zero, so <math>1-g</math> is a nonzero zero divisor in <math>K[G]</math>. === One-sided zero-divisor === * Consider the ring of (formal) matrices <math>\begin{pmatrix}x&y\\0&z\end{pmatrix}</math> with <math>x,z\in\mathbb{Z}</math> and <math>y\in\mathbb{Z}/2\mathbb{Z}</math>. Then <math>\begin{pmatrix}x&y\\0&z\end{pmatrix}\begin{pmatrix}a&b\\0&c\end{pmatrix}=\begin{pmatrix}xa&xb+yc\\0&zc\end{pmatrix}</math> and <math>\begin{pmatrix}a&b\\0&c\end{pmatrix}\begin{pmatrix}x&y\\0&z\end{pmatrix}=\begin{pmatrix}xa&ya+zb\\0&zc\end{pmatrix}</math>. If <math>x\ne0\ne z</math>, then <math>\begin{pmatrix}x&y\\0&z\end{pmatrix}</math> is a left zero divisor [[if and only if]] <math>x</math> is [[parity (mathematics)|even]], since <math>\begin{pmatrix}x&y\\0&z\end{pmatrix}\begin{pmatrix}0&1\\0&0\end{pmatrix}=\begin{pmatrix}0&x\\0&0\end{pmatrix}</math>, and it is a right zero divisor if and only if <math>z</math> is even for similar reasons. If either of <math>x,z</math> is <math>0</math>, then it is a two-sided zero-divisor. *Here is another example of a ring with an element that is a zero divisor on one side only. Let <math>S</math> be the [[set (mathematics)|set]] of all [[sequence]]s of integers <math>(a_1,a_2,a_3,...)</math>. Take for the ring all [[additive map]]s from <math>S</math> to <math>S</math>, with [[pointwise]] addition and [[function composition|composition]] as the ring operations. (That is, our ring is <math>\mathrm{End}(S)</math>, the ''[[endomorphism ring]]'' of the additive group <math>S</math>.) Three examples of elements of this ring are the '''right shift''' <math>R(a_1,a_2,a_3,...)=(0,a_1,a_2,...)</math>, the '''left shift''' <math>L(a_1,a_2,a_3,...)=(a_2,a_3,a_4,...)</math>, and the '''projection map''' onto the first factor <math>P(a_1,a_2,a_3,...)=(a_1,0,0,...)</math>. All three of these additive maps are not zero, and the composites <math>LP</math> and <math>PR</math> are both zero, so <math>L</math> is a left zero divisor and <math>R</math> is a right zero divisor in the ring of additive maps from <math>S</math> to <math>S</math>. However, <math>L</math> is not a right zero divisor and <math>R</math> is not a left zero divisor: the composite <math>LR</math> is the identity. <math>RL</math> is a two-sided zero-divisor since <math>RLP=0=PRL</math>, while <math>LR=1</math> is not in any direction.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)