Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
24-cell
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Diminishings ==== We can [[Faceting|facet]] the 24-cell by cutting{{Efn|We can cut a vertex off a polygon with a 0-dimensional cutting instrument (like the point of a knife, or the head of a zipper) by sweeping it along a 1-dimensional line, exposing a new edge. We can cut a vertex off a polyhedron with a 1-dimensional cutting edge (like a knife) by sweeping it through a 2-dimensional face plane, exposing a new face. We can cut a vertex off a polychoron (a 4-polytope) with a 2-dimensional cutting plane (like a snowplow), by sweeping it through a 3-dimensional cell volume, exposing a new cell. Notice that as within the new edge length of the polygon or the new face area of the polyhedron, every point within the new cell volume is now exposed on the surface of the polychoron.}} through interior cells bounded by vertex chords to remove vertices, exposing the [[Facet (geometry)|facets]] of interior 4-polytopes [[Inscribed figure|inscribed]] in the 24-cell. One can cut a 24-cell through any planar hexagon of 6 vertices, any planar rectangle of 4 vertices, or any triangle of 3 vertices. The great circle central planes ([[#Geodesics|above]]) are only some of those planes. Here we shall expose some of the others: the face planes{{Efn|Each cell face plane intersects with the other face planes of its kind to which it is not completely orthogonal or parallel at their characteristic vertex chord edge. Adjacent face planes of orthogonally-faced cells (such as cubes) intersect at an edge since they are not completely orthogonal.{{Efn|name=how planes intersect}} Although their dihedral angle is 90 degrees in the boundary 3-space, they lie in the same hyperplane{{Efn|name=hyperplanes}} (they are coincident rather than perpendicular in the fourth dimension); thus they intersect in a line, as non-parallel planes do in any 3-space.|name=how face planes intersect}} of interior polytopes.{{Efn|The only planes through exactly 6 vertices of the 24-cell (not counting the central vertex) are the '''16 hexagonal great circles'''. There are no planes through exactly 5 vertices. There are several kinds of planes through exactly 4 vertices: the 18 {{sqrt|2}} square great circles, the '''72 {{sqrt|1}} square (tesseract) faces''', and 144 {{sqrt|1}} by {{sqrt|2}} rectangles. The planes through exactly 3 vertices are the 96 {{sqrt|2}} equilateral triangle (16-cell) faces, and the '''96 {{sqrt|1}} equilateral triangle (24-cell) faces'''. There are an infinite number of central planes through exactly two vertices (great circle [[digon]]s); 16 are distinguished, as each is [[completely orthogonal]] to one of the 16 hexagonal great circles. '''Only the polygons composed of 24-cell {{radic|1}} edges are visible''' in the projections and rotating animations illustrating this article; the others contain invisible interior chords.{{Efn|name=interior features}}|name=planes through vertices|group=}} ===== 8-cell ===== Starting with a complete 24-cell, remove 8 orthogonal vertices (4 opposite pairs on 4 perpendicular axes), and the 8 edges which radiate from each, by cutting through 8 cubic cells bounded by {{sqrt|1}} edges to remove 8 [[cubic pyramid]]s whose [[Apex (geometry)|apexes]] are the vertices to be removed. This removes 4 edges from each hexagonal great circle (retaining just one opposite pair of edges), so no continuous hexagonal great circles remain. Now 3 perpendicular edges meet and form the corner of a cube at each of the 16 remaining vertices,{{Efn|The 24-cell's cubical vertex figure{{Efn|name=full size vertex figure}} has been truncated to a tetrahedral vertex figure (see [[#Relationships among interior polytopes|Kepler's drawing]]). The vertex cube has vanished, and now there are only 4 corners of the vertex figure where before there were 8. Four tesseract edges converge from the tetrahedron vertices and meet at its center, where they do not cross (since the tetrahedron does not have opposing vertices).|name=|group=}} and the 32 remaining edges divide the surface into 24 square faces and 8 cubic cells: a [[tesseract]]. There are three ways you can do this (choose a set of 8 orthogonal vertices out of 24), so there are three such tesseracts inscribed in the 24-cell.{{Efn|name=three 8-cells}} They overlap with each other, but most of their element sets are disjoint: they share some vertex count, but no edge length, face area, or cell volume.{{Efn|name=vertex-bonded octahedra}} They do share 4-content, their common core.{{Efn||name=common core|group=}} ===== 16-cell ===== Starting with a complete 24-cell, remove the 16 vertices of a tesseract (retaining the 8 vertices you removed above), by cutting through 16 tetrahedral cells bounded by {{sqrt|2}} chords to remove 16 [[tetrahedral pyramid]]s whose apexes are the vertices to be removed. This removes 12 great squares (retaining just one orthogonal set) and all the {{sqrt|1}} edges, exposing {{sqrt|2}} chords as the new edges. Now the remaining 6 great squares cross perpendicularly, 3 at each of 8 remaining vertices,{{Efn|The 24-cell's cubical vertex figure{{Efn|name=full size vertex figure}} has been truncated to an octahedral vertex figure. The vertex cube has vanished, and now there are only 6 corners of the vertex figure where before there were 8. The 6 {{sqrt|2}} chords which formerly converged from cube face centers now converge from octahedron vertices; but just as before, they meet at the center where 3 straight lines cross perpendicularly. The octahedron vertices are located 90Β° away outside the vanished cube, at the new nearest vertices; before truncation those were 24-cell vertices in the second shell of surrounding vertices.|name=|group=}} and their 24 edges divide the surface into 32 triangular faces and 16 tetrahedral cells: a [[16-cell]]. There are three ways you can do this (remove 1 of 3 sets of tesseract vertices), so there are three such 16-cells inscribed in the 24-cell. They overlap with each other, but all of their element sets are disjoint:{{Efn|name=completely disjoint}} they do not share any vertex count, edge length,{{Efn|name=root 2 chords}} or face area, but they do share cell volume. They also share 4-content, their common core.{{Efn||name=common core|group=}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)