Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
2C-B
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Pharmacology== ===Pharmacodynamics=== {| class="wikitable floatright" style="font-size:small;" |+ {{Nowrap|2C-B activities}} |- ! [[Biological target|Target]] !! [[Affinity (pharmacology)|Affinity]] (K<sub>i</sub>, nM) |- | [[5-HT1A receptor|5-HT<sub>1A</sub>]] || 130–311 |- | [[5-HT1B receptor|5-HT<sub>1B</sub>]] || 104 |- | [[5-HT1D receptor|5-HT<sub>1D</sub>]] || 26 |- | [[5-HT1E receptor|5-HT<sub>1E</sub>]] || 120 |- | [[5-HT1F receptor|5-HT<sub>1F</sub>]] || {{Abbr|ND|No data}} |- | [[5-HT2A receptor|5-HT<sub>2A</sub>]] || 0.66–32 (K<sub>i</sub>)<br />1.20–689 ({{Abbrlink|EC<sub>50</sub>|half-maximal effective concentration}})<br />4–101% ({{Abbrlink|E<sub>max</sub>|maximal efficacy}}) |- | [[5-HT2B receptor|5-HT<sub>2B</sub>]] || 13.5–97 (K<sub>i</sub>)<br />12.6–130 ({{Abbr|EC<sub>50</sub>|half-maximal effective concentration}})<br />52–97% ({{Abbr|E<sub>max</sub>|maximal efficacy}}) |- | [[5-HT2C receptor|5-HT<sub>2C</sub>]] || 32–90 (K<sub>i</sub>)<br />0.03–493 ({{Abbr|EC<sub>50</sub>|half-maximal effective concentration}})<br />50–116% ({{Abbr|E<sub>max</sub>|maximal efficacy}}) |- | [[5-HT3 receptor|5-HT<sub>3</sub>]] || >10,000 |- | [[5-HT4 receptor|5-HT<sub>4</sub>]] || {{Abbr|ND|No data}} |- | [[5-HT5A receptor|5-HT<sub>5A</sub>]] || >10,000 |- | [[5-HT6 receptor|5-HT<sub>6</sub>]] || 320 |- | [[5-HT7 receptor|5-HT<sub>7</sub>]] || 210 |- | [[Alpha-1A adrenergic receptor|α<sub>1A</sub>]] || >10,000 |- | [[Alpha-1B adrenergic receptor|α<sub>1B</sub>]] || >10,000 |- | [[Alpha-1D adrenergic receptor|α<sub>1D</sub>]] || {{Abbr|ND|No data}} |- | [[Alpha-2A adrenergic receptor|α<sub>2A</sub>]] || 309–320 |- | [[Alpha-2B adrenergic receptor|α<sub>2B</sub>]] || >10,000 |- | [[Alpha-2C adrenergic receptor|α<sub>2C</sub>]] || 103 |- | [[Beta-1 adrenergic receptor|β<sub>1</sub>]] || >10,000 |- | [[Beta-2 adrenergic receptor|β<sub>2</sub>]] || >10,000 |- | [[Beta-3 adrenergic receptor|β<sub>3</sub>]] || {{Abbr|ND|No data}} |- | [[D1 receptor|D<sub>1</sub>]] || 12,000 |- | [[D2 receptor|D<sub>2</sub>]] || 2,200–25,200 |- | [[D3 receptor|D<sub>3</sub>]] || 7,116–10,000 |- | [[D4 receptor|D<sub>4</sub>]] || >10,000 |- | [[D5 receptor|D<sub>5</sub>]] || >10,000 |- | [[H1 receptor|H<sub>1</sub>]]–[[H4 receptor|H<sub>4</sub>]] || >10,000 |- | [[Muscarinic acetylcholine M1 receptor|M<sub>1</sub>]]–[[M2 receptor|M<sub>2</sub>]] || >10,000 |- | [[Muscarinic acetylcholine M3 receptor|M<sub>3</sub>]] || 822 |- | [[M4 receptor|M<sub>4</sub>]]–[[M5 receptor|M<sub>5</sub>]] || >10,000 |- | [[I1 receptor|I<sub>1</sub>]] || 2,155 |- | [[Sigma-1 receptor|σ<sub>1</sub>]] || >10,000 |- | [[Sigma-2 receptor|σ<sub>2</sub>]] || >10,000 |- | {{Abbrlink|TAAR1|Trace amine-associated receptor 1}} || 90–3,000 (K<sub>i</sub>) (rodent)<br />3,300–7,190 ({{Abbr|EC<sub>50</sub>|half-maximal effective concentration}}) (human) |- | {{Abbrlink|SERT|Serotonin transporter}} || 9,700–13,300 (K<sub>i</sub>)<br />18,000–312,900 ({{Abbrlink|IC<sub>50</sub>|half-maximal inhibitory concentration}}) |- | {{Abbrlink|NET|Norepinephrine transporter}} || 27,400–31,000 (K<sub>i</sub>)<br />44,000–122,000 ({{Abbr|IC<sub>50</sub>|half-maximal inhibitory concentration}}) |- | {{Abbrlink|DAT|Dopamine transporter}} || 6,500–>30,000 (K<sub>i</sub>)<br />132,000–231,000 ({{Abbr|IC<sub>50</sub>|half-maximal inhibitory concentration}}) |- | {{Abbrlink|MAO-A|Monoamine oxidase A}} || 125,000 ({{Abbr|IC<sub>50</sub>|half-maximal inhibitory concentration}}) |- | {{Abbrlink|MAO-B|Monoamine oxidase B}} || 58,000 ({{Abbr|IC<sub>50</sub>|half-maximal inhibitory concentration}}) |- class="sortbottom" | colspan="2" style="width: 1px; background-color:#eaecf0; text-align: center;" | '''Notes:''' The smaller the value, the more avidly the drug binds to the site. All proteins are human unless otherwise specified. '''Refs:''' <ref name="PDSPKiDatabase">{{cite web | title=PDSP Database | website=UNC | url=https://pdspdb.unc.edu/databases/pdsp.php?testDDRadio=testDDRadio&testLigandDD=13930&kiAllRadio=all&doQuery=Submit+Query | language=zu | access-date=3 December 2024}}</ref><ref name="BindingDB">{{cite web | last=Liu | first=Tiqing | title=BindingDB BDBM50005267 2,5-dimethoxy-4-bromophenethylamine::2-(4-Bromo-2,5-dimethoxy-phenyl)-ethylamine::2-(4-bromo-2,5-dimethoxyphenyl)ethylamine::CHEMBL292821::US20240166618, Compound 88 | website=BindingDB | url=https://www.bindingdb.org/rwd/bind/chemsearch/marvin/MolStructure.jsp?monomerid=50005267 | access-date=3 December 2024}}</ref><ref name="Ray2010">{{cite journal | vauthors = Ray TS | title = Psychedelics and the human receptorome | journal = PLOS ONE | volume = 5 | issue = 2 | pages = e9019 | date = February 2010 | pmid = 20126400 | pmc = 2814854 | doi = 10.1371/journal.pone.0009019 | doi-access = free | bibcode = 2010PLoSO...5.9019R | url = }}</ref><ref name="RickliLuethiReinisch2015">{{cite journal | vauthors = Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME | title = Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs) | journal = Neuropharmacology | volume = 99 | issue = | pages = 546–553 | date = December 2015 | pmid = 26318099 | doi = 10.1016/j.neuropharm.2015.08.034 | url = http://edoc.unibas.ch/56163/1/20170921163006_59c3cceeb8e5d.pdf}}</ref><ref name="Nugteren-vanLonkhuyzenvanRielBrunt2015" /><ref name="WallachCaoCalkins2023">{{cite journal | vauthors = Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, Hennessey JJ, Bock HA, Anderson EI, Sherwood AM, Morris H, de Klein R, Klein AK, Cuccurazzu B, Gamrat J, Fannana T, Zauhar R, Halberstadt AL, McCorvy JD | title = Identification of 5-HT2A receptor signaling pathways associated with psychedelic potential | journal = Nat Commun | volume = 14 | issue = 1 | pages = 8221 | date = December 2023 | pmid = 38102107 | pmc = 10724237 | doi = 10.1038/s41467-023-44016-1 | url = https://bitnest.netfirms.com/external/10.1038/s41467-023-44016-1}}</ref><br /><ref name="Marcher-RørstedHalberstadtKlein2020">{{cite journal | vauthors = Marcher-Rørsted E, Halberstadt AL, Klein AK, Chatha M, Jademyr S, Jensen AA, Kristensen JL | title = Investigation of the 2,5-Dimethoxy Motif in Phenethylamine Serotonin 2A Receptor Agonists | journal = ACS Chem Neurosci | volume = 11 | issue = 9 | pages = 1238–1244 | date = May 2020 | pmid = 32212672 | doi = 10.1021/acschemneuro.0c00129 | url = }}</ref><ref name="LuethiTrachselHoener2018">{{cite journal | vauthors = Luethi D, Trachsel D, Hoener MC, Liechti ME | title = Monoamine receptor interaction profiles of 4-thio-substituted phenethylamines (2C-T drugs) | journal = Neuropharmacology | volume = 134 | issue = Pt A | pages = 141–148 | date = May 2018 | pmid = 28720478 | doi = 10.1016/j.neuropharm.2017.07.012 | url = https://edoc.unibas.ch/57358/1/20170920150712_59c2680084ec5.pdf}}</ref><ref name="RudinLuethiHoener2022">{{cite journal | vauthors = Rudin D, Luethi D, Hoener MC, Liechti ME | title=Structure-activity Relation of Halogenated 2,5-Dimethoxyamphetamines Compared to their α‑Desmethyl (2C) Analogues | journal=The FASEB Journal | volume=36 | issue=S1 | date=2022 | issn=0892-6638 | doi=10.1096/fasebj.2022.36.S1.R2121 | doi-access=free | url=https://www.researchgate.net/publication/360423277_Structure-activity_relation_of_halogenated_25-dimethoxyamphetamines_compared_to_their_a-desmethyl_2C_analogues}}</ref><ref name="PottieCannaertStove2020" /><ref name="Acuña-CastilloVillalobosMoya2002">{{cite journal | vauthors = Acuña-Castillo C, Villalobos C, Moya PR, Sáez P, Cassels BK, Huidobro-Toro JP | title = Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT(2A) and 5-HT(2C) receptors | journal = Br J Pharmacol | volume = 136 | issue = 4 | pages = 510–519 | date = June 2002 | pmid = 12055129 | pmc = 1573376 | doi = 10.1038/sj.bjp.0704747 | url = }}</ref><ref name="FlanaganBillacLandry2021">{{cite journal | vauthors = Flanagan TW, Billac GB, Landry AN, Sebastian MN, Cormier SA, Nichols CD | title = Structure-Activity Relationship Analysis of Psychedelics in a Rat Model of Asthma Reveals the Anti-Inflammatory Pharmacophore | journal = ACS Pharmacol Transl Sci | volume = 4 | issue = 2 | pages = 488–502 | date = April 2021 | pmid = 33860179 | pmc = 8033619 | doi = 10.1021/acsptsci.0c00063 | url = }}</ref><ref name="WagmannBrandtStratford2019">{{cite journal | vauthors = Wagmann L, Brandt SD, Stratford A, Maurer HH, Meyer MR | title = Interactions of phenethylamine-derived psychoactive substances of the 2C-series with human monoamine oxidases | journal = Drug Test Anal | volume = 11 | issue = 2 | pages = 318–324 | date = February 2019 | pmid = 30188017 | doi = 10.1002/dta.2494 | url = }}</ref><ref name="ZwartsenVerbovenvanKleef2017">{{cite journal | vauthors = Zwartsen A, Verboven AH, van Kleef RG, Wijnolts FM, Westerink RH, Hondebrink L | title = Measuring inhibition of monoamine reuptake transporters by new psychoactive substances (NPS) in real-time using a high-throughput, fluorescence-based assay | journal = Toxicol In Vitro | volume = 45 | issue = Pt 1 | pages = 60–71 | date = December 2017 | pmid = 28506818 | doi = 10.1016/j.tiv.2017.05.010 | url = }}</ref><ref name="SimmlerBuchyChaboz2016">{{cite journal | vauthors = Simmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME | title = In Vitro Characterization of Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1 | journal = J Pharmacol Exp Ther | volume = 357 | issue = 1 | pages = 134–144 | date = April 2016 | pmid = 26791601 | doi = 10.1124/jpet.115.229765 | url = https://web.archive.org/web/20250509235235/https://d1wqtxts1xzle7.cloudfront.net/74120533/eae6c6e62565b82d46b4d111bbea0f77b9c2-libre.pdf?1635931703=&response-content-disposition=inline%3B+filename%3DIn_Vitro_Characterization_of_Psychoactiv.pdf&Expires=1746838268&Signature=Sy4fJ90yUhxs68314NxYsW5PAaNrBGePRu35WRR4PIF-3YC7Z~sLdnCn5wfqqbLg9bDEGdt~oW55ugMP3D3jgA0BoRI~~GOb0NQOwrtfUEQK1PQs1uuN9qg5Y1ct8z5NsABm44RgtukkwRMdU6fO7OlfIsQ68hOiFk129Ll7UYqldxD2f1xhE2fTTfsxSpb8cMCJzHn7-ItqLdwnAUPFK7WggDIjmY1kCnaHLwIxMwdJCAq8L6DYzSTg7pZkbR8qlou~GXbTPQt~gYpyZTJp5hgW-7V6K5wLlQ7Z2xE7B0f9wEfuc1W1QNafg125Tr-vvAe4LEGKXV58bnn1bpfWKw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA}}</ref> |} Unlike most [[psychedelic]]s, 2C-B has been shown to be a low [[Efficacy (pharmacology)|efficacy]] human [[serotonin]] [[5-HT2A receptor|5-HT<sub>2A</sub>]] and [[5-HT2C receptor|5-HT<sub>2C</sub>]] receptor [[partial agonist]].<ref name="MoyaBergGutiérrez-Hernandez2007">{{cite journal | vauthors = Moya PR, Berg KA, Gutiérrez-Hernandez MA, Sáez-Briones P, Reyes-Parada M, Cassels BK, Clarke WP | title = Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors | journal = The Journal of Pharmacology and Experimental Therapeutics | volume = 321 | issue = 3 | pages = 1054–61 | date = June 2007 | pmid = 17337633 | doi = 10.1124/jpet.106.117507 | citeseerx = 10.1.1.690.3752 | s2cid = 11651502 }}</ref> This suggests that activation of the 5-HT<sub>2A</sub>-coupled [[phospholipase D]] pathway<ref name="MoyaBergGutiérrez-Hernandez2007" /> or functional antagonism of 5-HT<sub>2A</sub> may also play a role. The rank order of 5-HT<sub>2A</sub> receptor antagonist potency for this family of drugs in ''[[Xenopus]]'' is [[2C-I]] > 2C-B > [[2C-D]] > [[2C-H]].<ref name="WPCleanerAuto1">{{cite journal |vauthors=Villalobos CA, Bull P, Sáez P, Cassels BK, Huidobro-Toro JP |date=April 2004 |title=4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 4-HT2A receptor antagonists in Xenopus laevis oocytes |journal=British Journal of Pharmacology |volume=141 |issue=7 |pages=1167–74 |doi=10.1038/sj.bjp.0705722 |pmc=1574890 |pmid=15006903}}</ref> Although 2C-B itself was not evaluated, other closely related members of the 2C series, including [[2C-C]], [[2C-D]], [[2C-E]], [[2C-I]], and [[2C-T-2]], all showed no activity as [[monoamine releasing agent]]s of [[serotonin]], [[norepinephrine]], or [[dopamine]] ({{Abbrlink|EC<sub>50</sub>|half-maximal effective concentration}} = >100,000{{nbsp}}nM or "inactive").<ref name="NagaiNonakaSatohHishashiKamimura2007">{{cite journal | vauthors = Nagai F, Nonaka R, Satoh Hisashi Kamimura K | title = The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain | journal = Eur J Pharmacol | volume = 559 | issue = 2–3 | pages = 132–137 | date = March 2007 | pmid = 17223101 | doi = 10.1016/j.ejphar.2006.11.075 | url = }}</ref><ref name="EshlemanForsterWolfrum2014">{{cite journal | vauthors = Eshleman AJ, Forster MJ, Wolfrum KM, Johnson RA, Janowsky A, Gatch MB | title = Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function | journal = Psychopharmacology (Berl) | volume = 231 | issue = 5 | pages = 875–888 | date = March 2014 | pmid = 24142203 | pmc = 3945162 | doi = 10.1007/s00213-013-3303-6 | url = }}</ref> Likewise, these other 2C derivatives showed little activity as serotonin 5-HT<sub>1A</sub> receptor agonists ({{Abbr|EC<sub>50</sub>|half-maximal effective concentration}} = >3,000{{nbsp}}nM).<ref name="EshlemanForsterWolfrum2014" /> The September 1998 issue of ''[[Journal of Analytical Toxicology]]'' reported that very little data exists about the pharmacological properties, [[metabolism]], and [[toxicity]] of 2C-B.{{Citation needed|date=May 2025}} ===Pharmacokinetics=== With 30{{nbsp}}mg 2C-B by [[oral administration]], its [[Cmax (pharmacology)|peak]] concentrations (mean ± SD) were 5.4 ± 1.7{{nbsp}}ng/mL and its [[Tmax (pharmacology)|time to peak]] concentrations were 2.3 ± 1.0{{nbsp}}hours.<ref name="ThomannRudinKraus2025" /> 2C-B has been shown to be [[drug metabolism|metabolized]] by [[liver]] [[hepatocytes]], resulting in [[deamination]] and [[demethylation]] that produces several [[metabolite|product]]s. [[Oxidative deamination]] results in the 2-(4-bromo-2,5-dimethoxyphenyl)ethanol (BDMPE) and 4-bromo-2,5-dimethoxyphenylacetic acid (BDMPAA) metabolites. Additionally, 4-bromo-2,5-dimethoxybenzoic acid (BDMBA) can be produced by [[oxidative deamination]]. Further metabolism of BDMPE and BDMPAA may occur by demethylation. Alternatively, the later metabolites can be generated by demethylation of 2C-B followed by oxidative deamination.<ref name="CarmoHengstlerdeBoer2005" /> Deamination of 2C-B is mediated by the [[monoamine oxidase]] (MAO) [[enzyme]]s [[MAO-A]] and [[MAO-B]].<ref name="DeanStellpflugBurnett2013" /><ref name="TheobaldMaurer2007" /><ref name="ThomannRudinKraus2025" /> There is species differentiation in the metabolism of 2C-B. Mice hepatocytes produce 4-bromo-2,5-dimethoxyphenol (BDMP), a previously unknown metabolite. Meanwhile, human, monkey, and rabbit hepatocytes produce 2-(4-bromo-2-hydroxy-5-methoxyphenyl)-ethanol (B-2-HMPE), but dog, rat, and mouse hepatocytes do not.<ref name="CarmoHengstlerdeBoer2005" /> 2C-B's metabolites BDMPAA and 4-bromo-2-hydroxy-5-methoxyphenylacetic acid (B-2-HMPAA) in humans occur at peak concentrations 280-fold and 17-fold higher than those of 2C-B with [[oral administration]] of 2C-B, respectively.<ref name="ThomannRudinKraus2025" /> The [[elimination half-life]] of 2C-B in humans is 1.2 to 2.5{{nbsp}}hours.<ref name="PapaseitFarréPérez-Mañá2018" /><ref name="ThomannRudinKraus2025" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)