Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Algebraically closed field
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Relatively prime polynomials and roots=== For any field ''F'', if two polynomials {{math|''p''(''x''), ''q''(''x'') β ''F''[''x'']}} are [[coprime|relatively prime]] then they do not have a common root, for if {{math|''a'' β ''F''}} was a common root, then ''p''(''x'') and ''q''(''x'') would both be multiples of {{math|''x'' − ''a''}} and therefore they would not be relatively prime. The fields for which the reverse implication holds (that is, the fields such that whenever two polynomials have no common root then they are relatively prime) are precisely the algebraically closed fields. If the field ''F'' is algebraically closed, let ''p''(''x'') and ''q''(''x'') be two polynomials which are not relatively prime and let ''r''(''x'') be their [[greatest common divisor]]. Then, since ''r''(''x'') is not constant, it will have some root ''a'', which will be then a common root of ''p''(''x'') and ''q''(''x''). If ''F'' is not algebraically closed, let ''p''(''x'') be a polynomial whose degree is at least 1 without roots. Then ''p''(''x'') and ''p''(''x'') are not relatively prime, but they have no common roots (since none of them has roots).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)