Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Algorithmic probability
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Sequential Decisions Based on Algorithmic Probability== Sequential Decisions Based on Algorithmic Probability is a theoretical framework proposed by Marcus Hutter to unify algorithmic probability with decision theory. The framework provides a foundation for creating universally intelligent agents capable of optimal performance in any computable environment. It builds on Solomonoff’s theory of induction and incorporates elements of reinforcement learning, optimization, and sequential decision-making.<ref>Hutter, M. (2005). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Springer. ISBN 3-540-22139-5.</ref> ===Background=== Inductive reasoning, the process of predicting future events based on past observations, is central to intelligent behavior. Hutter formalized this process using Occam’s razor and algorithmic probability. The framework is rooted in Kolmogorov complexity, which measures the simplicity of data by the length of its shortest descriptive program. This concept underpins the universal distribution MM, as introduced by Ray Solomonoff, which assigns higher probabilities to simpler hypotheses. Hutter extended the universal distribution to include actions, creating a framework capable of addressing problems such as prediction, optimization, and reinforcement learning in environments with unknown structures. ===The AIXI Model=== The AIXI model is the centerpiece of Hutter’s theory. It describes a universal artificial agent designed to maximize expected rewards in an unknown environment. AIXI operates under the assumption that the environment can be represented by a computable probability distribution. It uses past observations to infer the most likely environmental model, leveraging algorithmic probability. Mathematically, AIXI evaluates all possible future sequences of actions and observations. It computes their algorithmic probabilities and expected utilities, selecting the sequence of actions that maximizes cumulative rewards. This approach transforms sequential decision-making into an optimization problem. However, the general formulation of AIXI is incomputable, making it impractical for direct implementation. ===Optimality and Limitations=== AIXI is universally optimal in the sense that it performs as well as or better than any other agent in all computable environments. This universality makes it a theoretical benchmark for intelligence. However, its reliance on algorithmic probability renders it computationally infeasible, requiring exponential time to evaluate all possibilities. To address this limitation, Hutter proposed time-bounded approximations, such as AIXItl, which reduce computational demands while retaining many theoretical properties of the original model. These approximations provide a more practical balance between computational feasibility and optimality. ===Applications and Implications=== The AIXI framework has significant implications for artificial intelligence and related fields. It provides a formal benchmark for measuring intelligence and a theoretical foundation for solving various problems, including prediction, reinforcement learning, and optimization. Despite its strengths, the framework has limitations. AIXI assumes that the environment is computable, excluding chaotic or non-computable systems. Additionally, its high computational requirements make real-world applications challenging. === Philosophical Considerations === Hutter’s theory raises philosophical questions about the nature of intelligence and computation. The reliance on algorithmic probability ties intelligence to the ability to compute and predict, which may exclude certain natural or chaotic phenomena. Nonetheless, the AIXI model offers insights into the theoretical upper bounds of intelligent behavior and serves as a stepping stone toward more practical AI systems.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)