Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Almost periodic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Bibliography== *{{Citation | last1 =Amerio | first1 =Luigi | author-link =Luigi Amerio | last2 =Prouse | first2 =Giovanni | author2-link =Giovanni Prouse | title =Almost-periodic functions and functional equations | place =New York–Cincinnati–Toronto–London–Melbourne | publisher =[[Van Nostrand Reinhold]] | series =[[The University Series in Higher Mathematics]] | year =1971 | pages =viii+184 | isbn =0-442-20295-4 | mr =275061 | zbl =0215.15701 }}. *A.S. Besicovitch, "Almost periodic functions", Cambridge Univ. Press (1932) * {{citation | first=S.|last= Bochner | title=Beitrage zur Theorie der fastperiodischen Funktionen | journal=Math. Annalen | year=1926 | volume=96 | pages=119–147 | doi=10.1007/BF01209156 |s2cid= 118124462 }} *S. Bochner and J. von Neumann, "Almost Periodic Function in a Group II", Trans. Amer. Math. Soc., 37 no. 1 (1935) pp. 21–50 * H. Bohr, "Almost-periodic functions", Chelsea, reprint (1947) *{{eom|title=Almost-periodic function|first=E.A.|last= Bredikhina}} *{{eom|title=Besicovitch almost-periodic functions|first=E.A.|last= Bredikhina}} *{{eom|title=Bohr almost-periodic functions|first=E.A.|last= Bredikhina}} *{{eom|title=Stepanov almost-periodic functions|first=E.A.|last= Bredikhina}} *{{eom|title=Weyl almost-periodic functions|first=E.A.|last= Bredikhina}} *J. von Neumann, "Almost Periodic Functions in a Group I", Trans. Amer. Math. Soc., 36 no. 3 (1934) pp. 445–492
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)