Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Associated Legendre polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalization via hypergeometric functions== {{main|Legendre function}} These functions may actually be defined for general complex parameters and argument:<ref>{{cite journal|first1=H. A.|last1=Mavromatis|first2=R. S. |last2=Alassar|title=A generalized formula for the integral of three Associated Legendre Polynomials|year=1999|journal=Appl. Math. Lett.|volume=12|number=3|pages=101-105|doi=10.1016/S0893-9659(98)00180-3}}</ref> <math display="block">P_{\lambda}^{\mu}(z) = \frac{1}{\Gamma(1-\mu)} \left[\frac{1+z}{1-z}\right]^{\mu/2} \,_2F_1 (-\lambda, \lambda+1; 1-\mu; \frac{1-z}{2})</math> where <math>\Gamma</math> is the [[gamma function]] and <math> _2F_1</math> is the [[hypergeometric function]] <math display="block">\,_2F_1 (\alpha, \beta; \gamma; z) = \frac{\Gamma(\gamma)}{\Gamma(\alpha)\Gamma(\beta)} \sum_{n=0}^\infty\frac{\Gamma(n+\alpha)\Gamma(n+\beta)}{\Gamma(n+\gamma)\ n!}z^n,</math> They are called the '''Legendre functions''' when defined in this more general way. They satisfy the same differential equation as before: <math display="block">(1-z^2)\,y'' -2zy' + \left(\lambda[\lambda+1] - \frac{\mu^2}{1-z^2}\right)\,y = 0.\,</math> Since this is a second order differential equation, it has a second solution, <math>Q_\lambda^{\mu}(z)</math>, defined as: <math display="block">Q_{\lambda}^{\mu}(z) = \frac{\sqrt{\pi}\ \Gamma(\lambda+\mu+1)}{2^{\lambda+1}\Gamma(\lambda+3/2)}\frac{1}{z^{\lambda+\mu+1}}(1-z^2)^{\mu/2} \,_2F_1 \left(\frac{\lambda+\mu+1}{2}, \frac{\lambda+\mu+2}{2}; \lambda+\frac{3}{2}; \frac{1}{z^2}\right)</math> <math>P_\lambda^{\mu}(z)</math> and <math>Q_\lambda^{\mu}(z)</math> both obey the various recurrence formulas given previously.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)